The dynamics of regularized discontinuous maps with applications to impacting systems

Stephen R Pring, Christopher J Budd

Research output: Contribution to journalArticlepeer-review

Abstract

One-dimensional piecewise-smooth discontinuous maps (maps with gaps) are known to have surprisingly rich dynamics, including periodic orbits with very high period and bifurcation diagrams showing period-adding or period-incrementing behavior. In this paper we study a new class of maps, which we refer to as regularized one-dimensional discontinuous maps, because they give very similar dynamics to discontinuous maps and closely approximate them, yet are continuous. We show that regularized discontinuous maps arise naturally as limits of higher dimensional continuous maps when we study the global dynamics of two nonsmooth mechanical applications: the cam-follower system and the impact oscillator. We review the dynamics of discontinuous maps, study the dynamics of regularized discontinuous maps, and compare this to the behavior of the two mechanical applications which we model. We show that we observe period-adding and period-incrementing behavior in these two systems respectively but that the effect of the regularization is to lead to a progressive loss of the higher period orbits.
Original languageEnglish
Pages (from-to)188-219
Number of pages32
JournalSIAM Journal on Applied Dynamical Systems
Volume9
Issue number1
DOIs
Publication statusPublished - 19 Feb 2010

Keywords

  • regularized discontinuous map
  • cam-follower system
  • period-adding
  • impact oscillator
  • period-incrementing
  • border-collision bifurcation
  • grazing bifurcation
  • corner-collision bifurcation

Fingerprint

Dive into the research topics of 'The dynamics of regularized discontinuous maps with applications to impacting systems'. Together they form a unique fingerprint.

Cite this