Abstract
We prove an a priori bound for the dynamic Φ34 model on the torus which is independent of the initial condition. In particular, this bound rules out the possibility of finite time blow-up of the solution. It also gives a uniform control over solutions at large times, and thus allows one to construct invariant measures via the Krylov–Bogoliubov method. It thereby provides a new dynamic construction of the Euclidean Φ34 field theory on finite volume. Our method is based on the local-in-time solution theory developed recently by Gubinelli, Imkeller, Perkowski and Catellier, Chouk. The argument relies entirely on deterministic PDE arguments (such as embeddings of Besov spaces and interpolation), which are combined to derive energy inequalities.
Original language | English |
---|---|
Pages (from-to) | 673-753 |
Number of pages | 81 |
Journal | Communications in Mathematical Physics |
Volume | 356 |
Issue number | 3 |
Early online date | 10 Oct 2017 |
DOIs | |
Publication status | Published - 1 Dec 2017 |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics