The Development of Biological Therapeutics

Suzanne Ali-Hassan

Research output: ThesisDoctoral Thesis

Abstract

The development of biological therapeutics has advanced medicine dramatically in the 20th century. Protein-based drugs are now commonly used in treatment of disease. Technologies to improve the pharmacokinetic properties of these drugs are at the cutting edge of research within the pharmaceutical industry. I have evaluated a novel thiol-selective specific linker (PermaLinkTM,, Glythera Ltd) for the attachment of chemical groups such as polyethylene glycol (PEG) to cysteine via a stable thio-ether bond.

Proteins are often PEGylated to improve their serum half-life, reduce their immunogenicity and prevent renal clearance by increasing their overall size. The linkers which attach these PEG molecules to a protein are an essential part of this modification as these affect where the molecule is attached and consequently whether the protein stays biologically active. In this study, I have compared PermaLinkTM-PEG with commercially available maleimide-PEG for the attachment of PEG groups to proteins.

Initially I established a protocol to reduce the test protein prior to reaction with PermaLinkTM-PEG or maleimide-PEG. Agarose resin-linked Tris(2-carboxyethyl) phosphine (TCEP) was used to reduce cysteines prior to the addition of thiol-reactive compounds. Using this reduction approach, I observed that PermaLinkTM-PEG demonstrated an increased apparent cystiene selectively compared to maleimide-PEG. PermaLinkTM-PEG attached the predicted number of PEG molecules based on the number of available cysteines while non-specific multi-pegylation was observed with maleimide-PEG.

Based on my results I propose that PermaLinkTM-PEG selectively targets cysteine thiol groups compared to maleimide-PEG. Overall I propose that PermaLinkTM technology could be used to develop new therapeutic proteins with reduced non-specific PEGylation.
LanguageEnglish
QualificationMPhil
Awarding Institution
  • University of Bath
Supervisors/Advisors
  • Mackenzie, Amanda, Supervisor
  • Watts, Andrew, Supervisor
Award date31 Dec 2013
StatusUnpublished - Sep 2012

Fingerprint

Therapeutics
Cysteine
Sulfhydryl Compounds
Proteins
Technology
Drug Industry
Pharmaceutical Preparations
Ether
Sepharose
Half-Life
Pharmacokinetics
Medicine
maleimide
Kidney
Serum
Research

Cite this

The Development of Biological Therapeutics. / Ali-Hassan, Suzanne.

2012. 111 p.

Research output: ThesisDoctoral Thesis

Ali-Hassan, S 2012, 'The Development of Biological Therapeutics', MPhil, University of Bath.
Ali-Hassan S. The Development of Biological Therapeutics. 2012. 111 p.
Ali-Hassan, Suzanne. / The Development of Biological Therapeutics. 2012. 111 p.
@phdthesis{df608622702b4f279973addc5b1294f6,
title = "The Development of Biological Therapeutics",
abstract = "The development of biological therapeutics has advanced medicine dramatically in the 20th century. Protein-based drugs are now commonly used in treatment of disease. Technologies to improve the pharmacokinetic properties of these drugs are at the cutting edge of research within the pharmaceutical industry. I have evaluated a novel thiol-selective specific linker (PermaLinkTM,, Glythera Ltd) for the attachment of chemical groups such as polyethylene glycol (PEG) to cysteine via a stable thio-ether bond.Proteins are often PEGylated to improve their serum half-life, reduce their immunogenicity and prevent renal clearance by increasing their overall size. The linkers which attach these PEG molecules to a protein are an essential part of this modification as these affect where the molecule is attached and consequently whether the protein stays biologically active. In this study, I have compared PermaLinkTM-PEG with commercially available maleimide-PEG for the attachment of PEG groups to proteins.Initially I established a protocol to reduce the test protein prior to reaction with PermaLinkTM-PEG or maleimide-PEG. Agarose resin-linked Tris(2-carboxyethyl) phosphine (TCEP) was used to reduce cysteines prior to the addition of thiol-reactive compounds. Using this reduction approach, I observed that PermaLinkTM-PEG demonstrated an increased apparent cystiene selectively compared to maleimide-PEG. PermaLinkTM-PEG attached the predicted number of PEG molecules based on the number of available cysteines while non-specific multi-pegylation was observed with maleimide-PEG.Based on my results I propose that PermaLinkTM-PEG selectively targets cysteine thiol groups compared to maleimide-PEG. Overall I propose that PermaLinkTM technology could be used to develop new therapeutic proteins with reduced non-specific PEGylation.",
author = "Suzanne Ali-Hassan",
year = "2012",
month = "9",
language = "English",
school = "University of Bath",

}

TY - THES

T1 - The Development of Biological Therapeutics

AU - Ali-Hassan,Suzanne

PY - 2012/9

Y1 - 2012/9

N2 - The development of biological therapeutics has advanced medicine dramatically in the 20th century. Protein-based drugs are now commonly used in treatment of disease. Technologies to improve the pharmacokinetic properties of these drugs are at the cutting edge of research within the pharmaceutical industry. I have evaluated a novel thiol-selective specific linker (PermaLinkTM,, Glythera Ltd) for the attachment of chemical groups such as polyethylene glycol (PEG) to cysteine via a stable thio-ether bond.Proteins are often PEGylated to improve their serum half-life, reduce their immunogenicity and prevent renal clearance by increasing their overall size. The linkers which attach these PEG molecules to a protein are an essential part of this modification as these affect where the molecule is attached and consequently whether the protein stays biologically active. In this study, I have compared PermaLinkTM-PEG with commercially available maleimide-PEG for the attachment of PEG groups to proteins.Initially I established a protocol to reduce the test protein prior to reaction with PermaLinkTM-PEG or maleimide-PEG. Agarose resin-linked Tris(2-carboxyethyl) phosphine (TCEP) was used to reduce cysteines prior to the addition of thiol-reactive compounds. Using this reduction approach, I observed that PermaLinkTM-PEG demonstrated an increased apparent cystiene selectively compared to maleimide-PEG. PermaLinkTM-PEG attached the predicted number of PEG molecules based on the number of available cysteines while non-specific multi-pegylation was observed with maleimide-PEG.Based on my results I propose that PermaLinkTM-PEG selectively targets cysteine thiol groups compared to maleimide-PEG. Overall I propose that PermaLinkTM technology could be used to develop new therapeutic proteins with reduced non-specific PEGylation.

AB - The development of biological therapeutics has advanced medicine dramatically in the 20th century. Protein-based drugs are now commonly used in treatment of disease. Technologies to improve the pharmacokinetic properties of these drugs are at the cutting edge of research within the pharmaceutical industry. I have evaluated a novel thiol-selective specific linker (PermaLinkTM,, Glythera Ltd) for the attachment of chemical groups such as polyethylene glycol (PEG) to cysteine via a stable thio-ether bond.Proteins are often PEGylated to improve their serum half-life, reduce their immunogenicity and prevent renal clearance by increasing their overall size. The linkers which attach these PEG molecules to a protein are an essential part of this modification as these affect where the molecule is attached and consequently whether the protein stays biologically active. In this study, I have compared PermaLinkTM-PEG with commercially available maleimide-PEG for the attachment of PEG groups to proteins.Initially I established a protocol to reduce the test protein prior to reaction with PermaLinkTM-PEG or maleimide-PEG. Agarose resin-linked Tris(2-carboxyethyl) phosphine (TCEP) was used to reduce cysteines prior to the addition of thiol-reactive compounds. Using this reduction approach, I observed that PermaLinkTM-PEG demonstrated an increased apparent cystiene selectively compared to maleimide-PEG. PermaLinkTM-PEG attached the predicted number of PEG molecules based on the number of available cysteines while non-specific multi-pegylation was observed with maleimide-PEG.Based on my results I propose that PermaLinkTM-PEG selectively targets cysteine thiol groups compared to maleimide-PEG. Overall I propose that PermaLinkTM technology could be used to develop new therapeutic proteins with reduced non-specific PEGylation.

M3 - Doctoral Thesis

ER -