1 Citation (SciVal)

Abstract

In the development of implantable neural interfaces, the recording of signals from the peripheral nerves is a major challenge. Since the interference from outside the body, other biopotentials, and even random noise can be orders of magnitude larger than the neural signals, a filter network to attenuate the noise and interference is necessary. However, these networks may drastically affect the system performance, especially in recording systems with multiple electrode cuffs (MECs), where a higher number of electrodes leads to complicated circuits. This paper introduces formal analyses of the performance of two commonly used filter networks. To achieve a manageable set of design equations, the state equations of the complete system are simplified. The derived equations help the designer in the task of creating an interface network for specific applications. The noise, crosstalk and common-mode rejection ratio (CMRR) of the recording system are computed as a function of electrode impedance, filter component values and amplifier specifications. The effect of electrode mismatches as an inherent part of any multi-electrode system is also discussed, using measured data taken from a MEC implanted in a sheep. The accuracy of these analyses is then verified by simulations of the complete system. The results indicate good agreement between analytic equations and simulations. This work highlights the critical importance of understanding the effect of interface circuits on the performance of neural recording systems.
Original languageEnglish
Article number3450
JournalSensors
Volume22
Issue number9
Early online date30 Apr 2022
DOIs
Publication statusPublished - 1 May 2022

Bibliographical note

Funding
This research was funded by EPSRC grant number EP/P018947/1, and the APC is not applicable.
Data Availability Statement
Not applicable.

Fingerprint

Dive into the research topics of 'The Design of a Low Noise, Multi-Channel Recording System for use in Implanted Peripheral Nerve Interfaces'. Together they form a unique fingerprint.

Cite this