The dependence of enzyme activity on temperature: determination and validation of parameters

M E Peterson, R M Daniel, M J Danson, R Eisenthal

Research output: Contribution to journalArticle

88 Citations (Scopus)

Abstract

Traditionally, the dependence of enzyme activity on temperature has been described by a model consisting of two processes: the catalytic reaction defined by Delta G(cat)(double dagger), and irreversible inactivation defined by Delta G(inact)(double dagger). However, such a model does not account in for the observed temperature-dependent behaviour of enzymes, and a new model has been developed and validated. This model (the Equilibrium Model) describes a new mechanism by which enzymes lose activity at high temperatures, by including an inactive form of the enzyme (E-inact) that is in reversible equilibrium with the active form (E-act); it is the inactive form that undergoes irreversible thermal inactivation to the thermally denatured state. This equilibrium is described by an equilibrium constant whose temperature-dependence is characterized in terms of the enthalpy of the equilibrium, Delta H-eq, and a new thermal parameter, T-eq, which is the temperature at which the concentrations of E-act and E-inact are equal; T-eq may therefore be regarded as the thermal equivalent of K-m. Characterization of an enzyme with respect to its temperature-dependent behaviour must therefore include a determination of these intrinsic properties. The Equilibrium Model has major implications for enzymology, biotechnology and understanding the evolution of enzymes. The present study presents a new direct data-fitting method based on fitting progress curves directly to the Equilibrium Model, and assesses the robustness of this procedure and the effect of assay data on the accurate determination of T-eq and its associated parameters. It also describes simpler experimental methods for their determination than have been previously available, including those required for the application of the Equilibrium Model to non-ideal enzyme reactions.
Original languageEnglish
Pages (from-to)331-337
Number of pages7
JournalBiochemical Journal
Volume402
DOIs
Publication statusPublished - 2007

Fingerprint

Enzyme activity
Temperature
Enzymes
Hot Temperature
Biotechnology
Equilibrium constants
Curve fitting
Cats
Enthalpy
Assays

Cite this

The dependence of enzyme activity on temperature: determination and validation of parameters. / Peterson, M E; Daniel, R M; Danson, M J; Eisenthal, R.

In: Biochemical Journal, Vol. 402, 2007, p. 331-337.

Research output: Contribution to journalArticle

@article{01f451fa3470424081aa329fb80d45d6,
title = "The dependence of enzyme activity on temperature: determination and validation of parameters",
abstract = "Traditionally, the dependence of enzyme activity on temperature has been described by a model consisting of two processes: the catalytic reaction defined by Delta G(cat)(double dagger), and irreversible inactivation defined by Delta G(inact)(double dagger). However, such a model does not account in for the observed temperature-dependent behaviour of enzymes, and a new model has been developed and validated. This model (the Equilibrium Model) describes a new mechanism by which enzymes lose activity at high temperatures, by including an inactive form of the enzyme (E-inact) that is in reversible equilibrium with the active form (E-act); it is the inactive form that undergoes irreversible thermal inactivation to the thermally denatured state. This equilibrium is described by an equilibrium constant whose temperature-dependence is characterized in terms of the enthalpy of the equilibrium, Delta H-eq, and a new thermal parameter, T-eq, which is the temperature at which the concentrations of E-act and E-inact are equal; T-eq may therefore be regarded as the thermal equivalent of K-m. Characterization of an enzyme with respect to its temperature-dependent behaviour must therefore include a determination of these intrinsic properties. The Equilibrium Model has major implications for enzymology, biotechnology and understanding the evolution of enzymes. The present study presents a new direct data-fitting method based on fitting progress curves directly to the Equilibrium Model, and assesses the robustness of this procedure and the effect of assay data on the accurate determination of T-eq and its associated parameters. It also describes simpler experimental methods for their determination than have been previously available, including those required for the application of the Equilibrium Model to non-ideal enzyme reactions.",
author = "Peterson, {M E} and Daniel, {R M} and Danson, {M J} and R Eisenthal",
note = "ID number: ISI:000244762500013",
year = "2007",
doi = "10.1042/bj20061143",
language = "English",
volume = "402",
pages = "331--337",
journal = "Biochemical Journal",
issn = "0264-6021",
publisher = "Portland Press Ltd.",

}

TY - JOUR

T1 - The dependence of enzyme activity on temperature: determination and validation of parameters

AU - Peterson, M E

AU - Daniel, R M

AU - Danson, M J

AU - Eisenthal, R

N1 - ID number: ISI:000244762500013

PY - 2007

Y1 - 2007

N2 - Traditionally, the dependence of enzyme activity on temperature has been described by a model consisting of two processes: the catalytic reaction defined by Delta G(cat)(double dagger), and irreversible inactivation defined by Delta G(inact)(double dagger). However, such a model does not account in for the observed temperature-dependent behaviour of enzymes, and a new model has been developed and validated. This model (the Equilibrium Model) describes a new mechanism by which enzymes lose activity at high temperatures, by including an inactive form of the enzyme (E-inact) that is in reversible equilibrium with the active form (E-act); it is the inactive form that undergoes irreversible thermal inactivation to the thermally denatured state. This equilibrium is described by an equilibrium constant whose temperature-dependence is characterized in terms of the enthalpy of the equilibrium, Delta H-eq, and a new thermal parameter, T-eq, which is the temperature at which the concentrations of E-act and E-inact are equal; T-eq may therefore be regarded as the thermal equivalent of K-m. Characterization of an enzyme with respect to its temperature-dependent behaviour must therefore include a determination of these intrinsic properties. The Equilibrium Model has major implications for enzymology, biotechnology and understanding the evolution of enzymes. The present study presents a new direct data-fitting method based on fitting progress curves directly to the Equilibrium Model, and assesses the robustness of this procedure and the effect of assay data on the accurate determination of T-eq and its associated parameters. It also describes simpler experimental methods for their determination than have been previously available, including those required for the application of the Equilibrium Model to non-ideal enzyme reactions.

AB - Traditionally, the dependence of enzyme activity on temperature has been described by a model consisting of two processes: the catalytic reaction defined by Delta G(cat)(double dagger), and irreversible inactivation defined by Delta G(inact)(double dagger). However, such a model does not account in for the observed temperature-dependent behaviour of enzymes, and a new model has been developed and validated. This model (the Equilibrium Model) describes a new mechanism by which enzymes lose activity at high temperatures, by including an inactive form of the enzyme (E-inact) that is in reversible equilibrium with the active form (E-act); it is the inactive form that undergoes irreversible thermal inactivation to the thermally denatured state. This equilibrium is described by an equilibrium constant whose temperature-dependence is characterized in terms of the enthalpy of the equilibrium, Delta H-eq, and a new thermal parameter, T-eq, which is the temperature at which the concentrations of E-act and E-inact are equal; T-eq may therefore be regarded as the thermal equivalent of K-m. Characterization of an enzyme with respect to its temperature-dependent behaviour must therefore include a determination of these intrinsic properties. The Equilibrium Model has major implications for enzymology, biotechnology and understanding the evolution of enzymes. The present study presents a new direct data-fitting method based on fitting progress curves directly to the Equilibrium Model, and assesses the robustness of this procedure and the effect of assay data on the accurate determination of T-eq and its associated parameters. It also describes simpler experimental methods for their determination than have been previously available, including those required for the application of the Equilibrium Model to non-ideal enzyme reactions.

U2 - 10.1042/bj20061143

DO - 10.1042/bj20061143

M3 - Article

VL - 402

SP - 331

EP - 337

JO - Biochemical Journal

JF - Biochemical Journal

SN - 0264-6021

ER -