### Abstract

Original language | English |
---|---|

Pages (from-to) | 131-142 |

Number of pages | 12 |

Journal | Mathematische Zeitschrift |

Volume | 239 |

Issue number | 1 |

DOIs | |

Publication status | Published - 2002 |

### Fingerprint

### Cite this

*Mathematische Zeitschrift*,

*239*(1), 131-142. https://doi.org/10.1007/s002090100287

**The complexification and degree of a semi-algebraic set.** / Roy, M F; Vorobjov, N.

Research output: Contribution to journal › Article

*Mathematische Zeitschrift*, vol. 239, no. 1, pp. 131-142. https://doi.org/10.1007/s002090100287

}

TY - JOUR

T1 - The complexification and degree of a semi-algebraic set

AU - Roy, M F

AU - Vorobjov, N

N1 - ID number: ISI:000173912600006

PY - 2002

Y1 - 2002

N2 - The complexification of a semi-algebraic set S subset of R-n is the smallest complex algebraic set containing S. Let S be defined by 8 polynomials of degrees less than d. We prove that the geometric degree of the complexification is less than s(n)O(d)(2n).

AB - The complexification of a semi-algebraic set S subset of R-n is the smallest complex algebraic set containing S. Let S be defined by 8 polynomials of degrees less than d. We prove that the geometric degree of the complexification is less than s(n)O(d)(2n).

U2 - 10.1007/s002090100287

DO - 10.1007/s002090100287

M3 - Article

VL - 239

SP - 131

EP - 142

JO - Mathematische Zeitschrift

JF - Mathematische Zeitschrift

SN - 0025-5874

IS - 1

ER -