The angular momentum distribution and baryon content of star-forming galaxies at z ∼ 1-3

A. Burkert, N. M Förster Schreiber, R. Genzel, P. Lang, L. J. Tacconi, E. Wisnioski, S. Wuyts, K. Bandara, A. Beifiori, R. Bender, G. Brammer, J. Chan, R. Davies, A. Dekel, M. Fabricius, M. Fossati, S. Kulkarni, D. Lutz, J. T. Mendel, I. Momcheva & 8 others E. J. Nelson, T. Naab, A. Renzini, R. Saglia, R. M. Sharples, A. Sternberg, D. Wilman, E. Wuyts

Research output: Contribution to journalArticle

  • 35 Citations

Abstract

We analyze the angular momenta of massive star-forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z ∼ 0.8-2.6). Our sample of ∼360 log(M /MȮ) ∼ 9.3-11.8 SFGs is mainly based on the KMOS3D and SINS/zC-SINF surveys of Hα kinematics, and collectively provides a representative subset of the massive star-forming population. The inferred halo scale angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter ∼ 0.037 and its dispersion (σ logλ∼ 0.2). Spin parameters correlate with the disk radial scale and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average, even at high redshifts, the specific angular momentum of disk galaxies reflects that of their dark matter halos (j d= j DM). The lack of correlation between λ × (j d/j DM) and the nuclear stellar density Σ(1 kpc) favors a scenario where disk-internal angular momentum redistribution leads to "compaction" inside massive high-redshift disks. For our sample, the inferred average stellar to dark matter mass ratio is ∼2%, consistent with abundance matching results. Including the molecular gas, the total baryonic disk to dark matter mass ratio is ∼5% for halos near 1012 M Ȯ, which corresponds to 31% of the cosmologically available baryons, implying that high-redshift disks are strongly baryon dominated.

LanguageEnglish
Article number214
JournalAstrophysical Journal
Volume826
Issue number2
DOIs
StatusPublished - 1 Aug 2016

Fingerprint

angular momentum
baryons
halos
galaxies
dark matter
stars
massive stars
mass ratios
disk galaxies
compaction
molecular gases
stellar mass
kinematics
set theory
star formation
time measurement
distribution
gas
parameter

Keywords

  • cosmology: observations
  • galaxies: evolution
  • galaxies: high-redshift
  • infrared: galaxies

Cite this

Burkert, A., Schreiber, N. M. F., Genzel, R., Lang, P., Tacconi, L. J., Wisnioski, E., ... Wuyts, E. (2016). The angular momentum distribution and baryon content of star-forming galaxies at z ∼ 1-3. Astrophysical Journal, 826(2), [214]. https://doi.org/10.3847/0004-637X/826/2/214

The angular momentum distribution and baryon content of star-forming galaxies at z ∼ 1-3. / Burkert, A.; Schreiber, N. M Förster; Genzel, R.; Lang, P.; Tacconi, L. J.; Wisnioski, E.; Wuyts, S.; Bandara, K.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R.; Dekel, A.; Fabricius, M.; Fossati, M.; Kulkarni, S.; Lutz, D.; Mendel, J. T.; Momcheva, I.; Nelson, E. J.; Naab, T.; Renzini, A.; Saglia, R.; Sharples, R. M.; Sternberg, A.; Wilman, D.; Wuyts, E.

In: Astrophysical Journal, Vol. 826, No. 2, 214, 01.08.2016.

Research output: Contribution to journalArticle

Burkert, A, Schreiber, NMF, Genzel, R, Lang, P, Tacconi, LJ, Wisnioski, E, Wuyts, S, Bandara, K, Beifiori, A, Bender, R, Brammer, G, Chan, J, Davies, R, Dekel, A, Fabricius, M, Fossati, M, Kulkarni, S, Lutz, D, Mendel, JT, Momcheva, I, Nelson, EJ, Naab, T, Renzini, A, Saglia, R, Sharples, RM, Sternberg, A, Wilman, D & Wuyts, E 2016, 'The angular momentum distribution and baryon content of star-forming galaxies at z ∼ 1-3' Astrophysical Journal, vol. 826, no. 2, 214. https://doi.org/10.3847/0004-637X/826/2/214
Burkert A, Schreiber NMF, Genzel R, Lang P, Tacconi LJ, Wisnioski E et al. The angular momentum distribution and baryon content of star-forming galaxies at z ∼ 1-3. Astrophysical Journal. 2016 Aug 1;826(2). 214. https://doi.org/10.3847/0004-637X/826/2/214
Burkert, A. ; Schreiber, N. M Förster ; Genzel, R. ; Lang, P. ; Tacconi, L. J. ; Wisnioski, E. ; Wuyts, S. ; Bandara, K. ; Beifiori, A. ; Bender, R. ; Brammer, G. ; Chan, J. ; Davies, R. ; Dekel, A. ; Fabricius, M. ; Fossati, M. ; Kulkarni, S. ; Lutz, D. ; Mendel, J. T. ; Momcheva, I. ; Nelson, E. J. ; Naab, T. ; Renzini, A. ; Saglia, R. ; Sharples, R. M. ; Sternberg, A. ; Wilman, D. ; Wuyts, E. / The angular momentum distribution and baryon content of star-forming galaxies at z ∼ 1-3. In: Astrophysical Journal. 2016 ; Vol. 826, No. 2.
@article{b8946749edf34c7d88328114d0966b8d,
title = "The angular momentum distribution and baryon content of star-forming galaxies at z ∼ 1-3",
abstract = "We analyze the angular momenta of massive star-forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z ∼ 0.8-2.6). Our sample of ∼360 log(M ∗/MȮ) ∼ 9.3-11.8 SFGs is mainly based on the KMOS3D and SINS/zC-SINF surveys of Hα kinematics, and collectively provides a representative subset of the massive star-forming population. The inferred halo scale angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter ∼ 0.037 and its dispersion (σ logλ∼ 0.2). Spin parameters correlate with the disk radial scale and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average, even at high redshifts, the specific angular momentum of disk galaxies reflects that of their dark matter halos (j d= j DM). The lack of correlation between λ × (j d/j DM) and the nuclear stellar density Σ∗(1 kpc) favors a scenario where disk-internal angular momentum redistribution leads to {"}compaction{"} inside massive high-redshift disks. For our sample, the inferred average stellar to dark matter mass ratio is ∼2{\%}, consistent with abundance matching results. Including the molecular gas, the total baryonic disk to dark matter mass ratio is ∼5{\%} for halos near 1012 M Ȯ, which corresponds to 31{\%} of the cosmologically available baryons, implying that high-redshift disks are strongly baryon dominated.",
keywords = "cosmology: observations, galaxies: evolution, galaxies: high-redshift, infrared: galaxies",
author = "A. Burkert and Schreiber, {N. M F{\"o}rster} and R. Genzel and P. Lang and Tacconi, {L. J.} and E. Wisnioski and S. Wuyts and K. Bandara and A. Beifiori and R. Bender and G. Brammer and J. Chan and R. Davies and A. Dekel and M. Fabricius and M. Fossati and S. Kulkarni and D. Lutz and Mendel, {J. T.} and I. Momcheva and Nelson, {E. J.} and T. Naab and A. Renzini and R. Saglia and Sharples, {R. M.} and A. Sternberg and D. Wilman and E. Wuyts",
year = "2016",
month = "8",
day = "1",
doi = "10.3847/0004-637X/826/2/214",
language = "English",
volume = "826",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing",
number = "2",

}

TY - JOUR

T1 - The angular momentum distribution and baryon content of star-forming galaxies at z ∼ 1-3

AU - Burkert, A.

AU - Schreiber, N. M Förster

AU - Genzel, R.

AU - Lang, P.

AU - Tacconi, L. J.

AU - Wisnioski, E.

AU - Wuyts, S.

AU - Bandara, K.

AU - Beifiori, A.

AU - Bender, R.

AU - Brammer, G.

AU - Chan, J.

AU - Davies, R.

AU - Dekel, A.

AU - Fabricius, M.

AU - Fossati, M.

AU - Kulkarni, S.

AU - Lutz, D.

AU - Mendel, J. T.

AU - Momcheva, I.

AU - Nelson, E. J.

AU - Naab, T.

AU - Renzini, A.

AU - Saglia, R.

AU - Sharples, R. M.

AU - Sternberg, A.

AU - Wilman, D.

AU - Wuyts, E.

PY - 2016/8/1

Y1 - 2016/8/1

N2 - We analyze the angular momenta of massive star-forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z ∼ 0.8-2.6). Our sample of ∼360 log(M ∗/MȮ) ∼ 9.3-11.8 SFGs is mainly based on the KMOS3D and SINS/zC-SINF surveys of Hα kinematics, and collectively provides a representative subset of the massive star-forming population. The inferred halo scale angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter ∼ 0.037 and its dispersion (σ logλ∼ 0.2). Spin parameters correlate with the disk radial scale and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average, even at high redshifts, the specific angular momentum of disk galaxies reflects that of their dark matter halos (j d= j DM). The lack of correlation between λ × (j d/j DM) and the nuclear stellar density Σ∗(1 kpc) favors a scenario where disk-internal angular momentum redistribution leads to "compaction" inside massive high-redshift disks. For our sample, the inferred average stellar to dark matter mass ratio is ∼2%, consistent with abundance matching results. Including the molecular gas, the total baryonic disk to dark matter mass ratio is ∼5% for halos near 1012 M Ȯ, which corresponds to 31% of the cosmologically available baryons, implying that high-redshift disks are strongly baryon dominated.

AB - We analyze the angular momenta of massive star-forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z ∼ 0.8-2.6). Our sample of ∼360 log(M ∗/MȮ) ∼ 9.3-11.8 SFGs is mainly based on the KMOS3D and SINS/zC-SINF surveys of Hα kinematics, and collectively provides a representative subset of the massive star-forming population. The inferred halo scale angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter ∼ 0.037 and its dispersion (σ logλ∼ 0.2). Spin parameters correlate with the disk radial scale and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average, even at high redshifts, the specific angular momentum of disk galaxies reflects that of their dark matter halos (j d= j DM). The lack of correlation between λ × (j d/j DM) and the nuclear stellar density Σ∗(1 kpc) favors a scenario where disk-internal angular momentum redistribution leads to "compaction" inside massive high-redshift disks. For our sample, the inferred average stellar to dark matter mass ratio is ∼2%, consistent with abundance matching results. Including the molecular gas, the total baryonic disk to dark matter mass ratio is ∼5% for halos near 1012 M Ȯ, which corresponds to 31% of the cosmologically available baryons, implying that high-redshift disks are strongly baryon dominated.

KW - cosmology: observations

KW - galaxies: evolution

KW - galaxies: high-redshift

KW - infrared: galaxies

UR - http://www.scopus.com/inward/record.url?scp=84982243046&partnerID=8YFLogxK

UR - http://dx.doi.org/10.3847/0004-637X/826/2/214

U2 - 10.3847/0004-637X/826/2/214

DO - 10.3847/0004-637X/826/2/214

M3 - Article

VL - 826

JO - Astrophysical Journal

T2 - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 2

M1 - 214

ER -