Projects per year
Abstract
In this proof-of-concept paper we show that tensor product approach is efficient for control of large quantum systems, such as Heisenberg spin wires, which are essential for emerging quantum computing technologies. We compute optimal control sequences using GRAPE method, applying the recently developed tAMEn algorithm to calculate evolution of quantum states represented in the tensor train format to reduce storage. Using tensor product algorithms we can overcome the curse of dimensionality and compute the optimal control pulse for a 41 spin system on a single workstation with fully controlled accuracy and huge savings of computational time and memory. The use of tensor product algorithms opens new approaches for development of quantum computers with 50–100 qubits.
Original language | English |
---|---|
Title of host publication | Integral Methods in Science and Engineering |
Subtitle of host publication | Analytic Treatment and Numerical Approximations |
Editors | Christian Constanda, Paul Harris |
Publisher | Springer International Publishing |
Pages | 367-379 |
Number of pages | 13 |
ISBN (Electronic) | 978-3-030-16077-7 |
ISBN (Print) | 978-3-030-16076-0 |
DOIs | |
Publication status | E-pub ahead of print - 19 Jul 2019 |
Fingerprint
Dive into the research topics of 'Tensor Product Approach to Quantum Control'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Sergey Dolgov Fellowship - Tensor Product Numerical Methods for High-Dimensional Problems in Probablility and Quantum Calculations
Scheichl, R. (PI)
Engineering and Physical Sciences Research Council
1/01/16 → 31/12/18
Project: Research council