Abstract
This paper introduces a potential method for the remote sensing of sea surface salinity (SSS) using the measured propagation delay of low-frequency Loran-C signals transmitted over an all-seawater path between the Sylt station in Germany and an integrated Loran-C/GPS receiver located in Harwich, UK. The overall delay variations in Loran-C surface waves along the path may be explained by changes in sea surface properties (especially the temperature and salinity), as well as atmospheric properties that determine the refractive index of the atmosphere. After removing the atmospheric and sea surface temperature (SST) effects from the measured delay, the residual delay revealed a temporal variation similar to that of SSS data obtained by the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite.
Original language | English |
---|---|
Pages (from-to) | 695-698 |
Number of pages | 4 |
Journal | Ocean Science |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - 7 Sept 2015 |