TY - JOUR
T1 - Taxonomic status of Nanotyrannus lancensis (Dinosauria: Tyrannosauroidea) — a distinct taxon of small-bodied tyrannosaur
AU - Longrich, Nick
AU - Saitta, Evan T.
PY - 2024/1/3
Y1 - 2024/1/3
N2 - Tyrannosaurs are among the most intensively studied and best-known dinosaurs. Despite this, their relationships and systematics are highly controversial. An ongoing debate concerns the validity of Nanotyrannus lancensis, interpreted either as a distinct genus of small-bodied tyrannosaur or a juvenile of Tyrannosaurus rex. We examine multiple lines of evidence and show that the evidence strongly supports recognition of Nanotyrannus as a distinct species for the following reasons: 1. High diversity of tyrannosaurs and predatory dinosaurs supports the idea that multiple tyrannosaurids inhabited the late Maastrichtian of Laramidia; 2. Nanotyrannus lacks characters supporting referral to Tyrannosaurus or Tyrannosaurinae but differs from T. rex in >150 morphological characters, while intermediate forms combining the features of Nanotyrannus and T. rex are unknown; 3. Histology shows specimens of Nanotyrannus showing (i) skeletal fusions, (ii) mature skull bone textures, (iii) slow growth rates relative to T. rex, (iv) decelerating growth in their final years of life, and (v) growth curves predicting adult masses of ~1500 kg or less, showing these animals are subadults and young adults, not juvenile Tyrannosaurus; 4. growth series of other tyrannosaurids, including Tarbosaurus and Gorgosaurus, do not show morphological changes proposed for a Nanotyrannus–Tyrannosaurus growth series, and deriving Tyrannosaurus from Nanotyrannus requires several changes inconsistent with known patterns of dinosaur development; 5. Juvenile T. rex exist, showing diagnostic features of Tyrannosaurus; 6. Phylogenetic analysis suggests that Nanotyrannus may lie outside Tyrannosauridae. Tyrannosaur diversity before the K-Pg extinction is higher than previously appreciated. The challenges inherent in diagnosing species based on fossils mean paleontologists may be systematically underestimating the diversity of ancient ecosystems.
AB - Tyrannosaurs are among the most intensively studied and best-known dinosaurs. Despite this, their relationships and systematics are highly controversial. An ongoing debate concerns the validity of Nanotyrannus lancensis, interpreted either as a distinct genus of small-bodied tyrannosaur or a juvenile of Tyrannosaurus rex. We examine multiple lines of evidence and show that the evidence strongly supports recognition of Nanotyrannus as a distinct species for the following reasons: 1. High diversity of tyrannosaurs and predatory dinosaurs supports the idea that multiple tyrannosaurids inhabited the late Maastrichtian of Laramidia; 2. Nanotyrannus lacks characters supporting referral to Tyrannosaurus or Tyrannosaurinae but differs from T. rex in >150 morphological characters, while intermediate forms combining the features of Nanotyrannus and T. rex are unknown; 3. Histology shows specimens of Nanotyrannus showing (i) skeletal fusions, (ii) mature skull bone textures, (iii) slow growth rates relative to T. rex, (iv) decelerating growth in their final years of life, and (v) growth curves predicting adult masses of ~1500 kg or less, showing these animals are subadults and young adults, not juvenile Tyrannosaurus; 4. growth series of other tyrannosaurids, including Tarbosaurus and Gorgosaurus, do not show morphological changes proposed for a Nanotyrannus–Tyrannosaurus growth series, and deriving Tyrannosaurus from Nanotyrannus requires several changes inconsistent with known patterns of dinosaur development; 5. Juvenile T. rex exist, showing diagnostic features of Tyrannosaurus; 6. Phylogenetic analysis suggests that Nanotyrannus may lie outside Tyrannosauridae. Tyrannosaur diversity before the K-Pg extinction is higher than previously appreciated. The challenges inherent in diagnosing species based on fossils mean paleontologists may be systematically underestimating the diversity of ancient ecosystems.
U2 - 10.3390/fossils2010001
DO - 10.3390/fossils2010001
M3 - Article
SN - 2813-6284
JO - Fossils
JF - Fossils
ER -