TY - JOUR
T1 - Systematic design of millisecond gasification reactor for the incorporation of gas-sieving nanopores in single-layer graphene
AU - Huang, Shiqi
AU - Li, Shaoxian
AU - Hsu, Kuang-Jung
AU - Villalobos, Luis francisco
AU - Agrawal, Kumar varoon
PY - 2021/11/1
Y1 - 2021/11/1
N2 - Etching an ensemble of vacancy defects (nanopores) in single-layer graphene (SLG) to obtain a high density of nanopores with an effective size that enables high-performance gas sieving is challenging. This is because nanopore nucleation and expansion are usually coupled. Aggressive etching conditions that promote defect nucleation are difficult to control for limiting the pore expansion. To address this, we recently reported a millisecond gasification reactor (MGR) that allows aggressive etching and at the same time restricts the pore expansion time to a few milliseconds. Herein, we systematically analyze various components of the MGR setup and achieve optimal conditions based on a mathematical model simulating the etchant exposure profile in MGR. We study the effect of the etching conditions such as baseline pressure, peak pressure, and exposure time, on the defect formation in SLG via Raman spectroscopy. Nanopores formed at different etching temperatures are observed by scanning tunneling microscope, revealing the relationship between the etching temperature and the pore density. The incorporation of nanopores in SLG under the optimized conditions allows the realization of extremely attractive CO2-sieving performances from the nanoporous SLG (NSLG) membranes, marked by CO2 permeance of 900–4000 gas permeation units (GPU) and CO2/N2 selectivity of 17–25. This study establishes MGR as a highly tunable etching tool for incorporating the desired ensemble of nanopores in graphene for a number of important molecular separations.
AB - Etching an ensemble of vacancy defects (nanopores) in single-layer graphene (SLG) to obtain a high density of nanopores with an effective size that enables high-performance gas sieving is challenging. This is because nanopore nucleation and expansion are usually coupled. Aggressive etching conditions that promote defect nucleation are difficult to control for limiting the pore expansion. To address this, we recently reported a millisecond gasification reactor (MGR) that allows aggressive etching and at the same time restricts the pore expansion time to a few milliseconds. Herein, we systematically analyze various components of the MGR setup and achieve optimal conditions based on a mathematical model simulating the etchant exposure profile in MGR. We study the effect of the etching conditions such as baseline pressure, peak pressure, and exposure time, on the defect formation in SLG via Raman spectroscopy. Nanopores formed at different etching temperatures are observed by scanning tunneling microscope, revealing the relationship between the etching temperature and the pore density. The incorporation of nanopores in SLG under the optimized conditions allows the realization of extremely attractive CO2-sieving performances from the nanoporous SLG (NSLG) membranes, marked by CO2 permeance of 900–4000 gas permeation units (GPU) and CO2/N2 selectivity of 17–25. This study establishes MGR as a highly tunable etching tool for incorporating the desired ensemble of nanopores in graphene for a number of important molecular separations.
U2 - 10.1016/j.memsci.2021.119628
DO - 10.1016/j.memsci.2021.119628
M3 - Article
SN - 0376-7388
VL - 637
JO - Journal of Membrane Science
JF - Journal of Membrane Science
M1 - 119628
ER -