Abstract
Terminal metal acetylide complexes trans-[(dppm)2(Cl)Os(-CC-R-CC-H)] (dppm=Ph2PCH2PPh2, R=-p-C6H4- (1), -p-C6H4-C6H4-p- (2)) and trans-[(Et3P)2(Ph)Pt(CC-p-C6H4-CCH)] (3) have been synthesised by the application of established synthetic routes. Acetylide bridged mixed-metal complexes trans-[(dppm)2(Cl)Os-CC-p-C6H 4-CC-Ru(Cl)(dppm)2] (4), trans-[(Et3P)2(Ph)Pt-CC-p-C6H 4-CC-Ru(Cl)(dppm)2] (5), trans-[(Et3P)2(Ph)Pt-CC-p-C6H 4-CC-Ru(Ph3P)2(η5-C 5H5)] (6) and trans-[(Et3P)2(Ph)Pt-CC-p-C6H 4-CC-Ru(Ph3P)2(η5-C 5H4-CH3)] (7) have been formed by the reaction of 1, 2 and 3 with the appropriate metal chlorides. Complex 6 is less soluble in common organic solvents than the other complexes but this insolubility has been overcome by introducing a methylcyclopentadienyl group on the ruthenium centre to form complex 7. Complexes 1, 2, 4, 6 and 7 have shown reversible redox chemistry and in the di-metallic complexes, intramolecular electronic communication has been investigated by cyclic voltammetry. The shift in the lowest energy band in the UV-vis spectra of the mixed-metal complexes 4, 5, 6 and 7 is largely dependent on the various metal fragments.
Original language | English |
---|---|
Pages (from-to) | 55-62 |
Number of pages | 8 |
Journal | Journal of Organometallic Chemistry |
Volume | 570 |
Issue number | 1 |
DOIs | |
Publication status | Published - 10 Nov 1998 |
Keywords
- Acetylide
- Electrochemistry
- Osmium
- Platinum
- Ruthenium
ASJC Scopus subject areas
- Biochemistry
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry
- Materials Chemistry