Abstract
Among odd-nylons, nylon-5 exhibits the highest remanent polarization and is thus a desirable material for many applications of ferroelectric polymers. However, nylon-5 has never been used as a ferroelectric material, because the synthesis of nylon-5 and its processing into thin films are challenging. This work revisits the synthesis of nylon-5 via anionic ring opening polymerization (AROP) and studies the effect of reaction time and scale-up on (i) molecular weight (Mn), (ii) melting point (Tm), (iii) yield, and (iv) ferroelectric properties. For the first time, the molecular weight of nylon-5 is characterized via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, as well as matrix assisted laser desorption ionization time of flight mass spectroscopy (MALDI ToF-MS), showing Mn values of up to 12 500 g mol-1. Extended reaction times and the synthesis on a larger scale increase the molecular weight and yield. Nylon-5 thin films are fabricated from a TFA:acetone (60:40 mol%) solvent mixture. Nylon-5 thin-film capacitors are ferroelectric and show a remanent polarization as high as 12.5 ± 0.5 μC cm-2, which is stable in time. The high remanent polarization values, combined with the facile solution processing, render nylon-5 a promising candidate for future microelectronic and multi-ferroic applications.
Original language | English |
---|---|
Article number | 1900468 |
Journal | Macromolecular Chemistry and Physics |
Volume | 221 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Mar 2020 |
Keywords
- anionic ring opening polymerization
- ferroelectric thin films
- memory devices
- nylon-5
- polyamides
ASJC Scopus subject areas
- Condensed Matter Physics
- Physical and Theoretical Chemistry
- Organic Chemistry
- Polymers and Plastics
- Materials Chemistry