Projects per year
Abstract
Marine macroalgae (seaweed) has many advantages over terrestrial crops as a source of renewable biomass but is severely underutilised at present, especially within Europe. In particular, macroalgae has elevated poly- and monosaccharide content, making it an ideal feedstock as a heterotrophic fermentation sugar source for the production of higher value chemicals. Recent reports have detailed the suitability of seaweeds as a feedstock for the production of single-cell oils (SCOs) which have application in food, oleochemicals and fuels. It is proposed that a biorefinery system based on the production of SCOs alongside other secondary metabolites, has the potential to provide a sustainable replacement to terrestrial oils such as palm oil. This work therefore evaluates, for the first time, the environmental and economic sustainability of a production process for SCOs from seaweed Saccharina latissima using the oleaginous yeast Metschnikowia pulcherrima. Two alternative fermentation systems were considered, and uncertainties associated with the seasonal variation in seaweed carbohydrate yield and fermentation performance were integrated into the analysis. From an environmental perspective, the work indicates that seaweed derived SCO lipids and fats can be comparable to a terrestrial oil mix, with a potential climate change impact ranging between 2.5 and 9.9 kg CO 2 eq. kg −1 refined SCO. Interestingly and of particular significance, environmental impacts are mainly dominated by energy demand within fermentation and upstream processing steps. From an economic perspective, a break-even selling price for the oil was determined as between €5,300-€31,000 tonne −1 refined SCO, which was highly dependent on cost of the seaweed feedstock. Overall, we demonstrate that key uncertainties relating to seaweed cultivation costs and hydrolysate fermentation at scale result in a large range in values for environmental impact and economic return on investment. Yet even within the constraints and limitations of current knowhow, seaweed already offers a viable proposition for the competitive production of exotic oils similar to cocoa or shea butter in price and nature.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665992
Original language | English |
---|---|
Pages (from-to) | 1272-1281 |
Number of pages | 10 |
Journal | Journal of Cleaner Production |
Volume | 232 |
Issue number | 20 |
Early online date | 28 May 2019 |
DOIs | |
Publication status | Published - 20 Sept 2019 |
Keywords
- Economic analysis
- Life cycle assessment
- Oleaginous yeast
- Saccharina latissima
- Single cell oils
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- General Environmental Science
- Strategy and Management
- Industrial and Manufacturing Engineering
Fingerprint
Dive into the research topics of 'Sustainability and life cycle assessment (LCA) of macroalgae-derived single cell oils'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Integrated Energy Efficient Microwave and Unique Fermentation Processes for Pilot Scale Production of High Value Chemical from Lignocellulosic Waste
Chuck, C. (PI), Henk, D. (CoI), Leak, D. (CoI), McManus, M. (CoI) & Scott, R. (CoI)
Engineering and Physical Sciences Research Council
1/03/16 → 31/01/21
Project: Research council
Profiles
-
Chris Chuck
- Department of Chemical Engineering - Professor
- Reaction and Catalysis Engineering research unit (RaCE)
- Centre for Sustainable and Circular Technologies (CSCT)
- Water Innovation and Research Centre (WIRC)
- Centre for Bioengineering & Biomedical Technologies (CBio)
Person: Research & Teaching, Core staff
-
Marcelle McManus
- Department of Mechanical Engineering - Professor
- Institute for Sustainable Energy and the Environment
- Centre for Sustainable Energy Systems (SES) - Centre Director
- Water Innovation and Research Centre (WIRC)
- Centre for Doctoral Training in Decarbonisation of the Built Environment (dCarb)
- Institute for Mathematical Innovation (IMI)
- Made Smarter Innovation: Centre for People-Led Digitalisation
- Institute of Sustainability and Climate Change
- EPSRC Centre for Doctoral Training in Advanced Automotive Propulsion Systems (AAPS CDT)
- IAAPS: Propulsion and Mobility
Person: Research & Teaching, Core staff, Affiliate staff