Projects per year
Abstract
A free-surface synthetic Schlieren (Moisy et al. in Exp Fluids 46:1021–1036, 2009; Eddi et al. in J Fluid Mech 674:433–463, 2011) technique has been implemented in order to measure the surface topography generated by a
droplet bouncing on a vibrating fluid bath. This method was used to capture the wave fields of bouncers, walkers, and walkers interacting with boundaries. These wave profiles are compared with existing theoretical models and simulations and will prove valuable in guiding their future development. Specifically, the method provides insight into what type of boundary conditions apply to the wave field when a bouncing droplet approaches a submerged obstacle.
droplet bouncing on a vibrating fluid bath. This method was used to capture the wave fields of bouncers, walkers, and walkers interacting with boundaries. These wave profiles are compared with existing theoretical models and simulations and will prove valuable in guiding their future development. Specifically, the method provides insight into what type of boundary conditions apply to the wave field when a bouncing droplet approaches a submerged obstacle.
Original language | English |
---|---|
Journal | Experiments in Fluids |
DOIs | |
Publication status | Published - Sept 2016 |
Fingerprint
Dive into the research topics of 'Surface topography measurements of the bouncing droplet experiment'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Modelling, Computation ahnd Analysis of Droplets Guided by Faraday Waves: A Complex System with Macroscopic Quantum Analogies
Milewski, P. (PI)
Engineering and Physical Sciences Research Council
1/06/16 → 31/05/19
Project: Research council