Superconductivity in two-dimensional NbSe2 field effect transistors

Mohammed S El-Bana, Daniel Wolverson, Saverio Russo, Geetha Balakrishnan, Don Mck Paul, Simon J Bending

Research output: Contribution to journalArticlepeer-review

81 Citations (SciVal)
895 Downloads (Pure)


We describe investigations of superconductivity in few molecular layer NbSe2 field effect transistors. While devices fabricated from NbSe2 flakes less than eight molecular layers thick did not conduct, thicker flakes were superconducting with an onset Tc that was only slightly depressed from the bulk value for 2H-NbSe2 (7.2 K). The resistance typically showed a small, sharp high temperature transition followed by one or more broader transitions which usually ended in a wide tail to zero resistance at low temperatures. We speculate that these multiple resistive transitions are related to disorder in the layer stacking. The behavior of several flakes has been characterized as a function of temperature, applied field and back-gate voltage. We find that the conductance in the normal state and transition temperature depend weakly on the gate voltage, with both conductivity and Tcdecereasing as the electron concentration is increased. The application of a perpendicular magnetic field allows the evolution of different resistive transitions to be tracked and values of the zero temperature upper critical field, Hc2(0), and coherence length, ξ(0), to be independently estimated. Our results are analyzed in terms of available theories for these phenomena.

Original languageEnglish
Article number125020
Pages (from-to)26
Number of pages12
JournalSuperconductor Science and Technology
Issue number12
Publication statusPublished - Dec 2013


Dive into the research topics of 'Superconductivity in two-dimensional NbSe2 field effect transistors'. Together they form a unique fingerprint.

Cite this