TY - JOUR
T1 - Structure of mouse IP-10, a chemokine
AU - Jabeen, T
AU - Leonard, P
AU - Jamaluddin, H
AU - Acharya, K R
PY - 2008
Y1 - 2008
N2 - Interferon-gamma-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated beta-sheet of similar to 90 angstrom in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin- binding sites were observed on the surface and were present at the interface of each of the two beta-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.
AB - Interferon-gamma-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated beta-sheet of similar to 90 angstrom in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin- binding sites were observed on the surface and were present at the interface of each of the two beta-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.
UR - http://www.scopus.com/inward/record.url?scp=45749157580&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1107/S0907444908007026
U2 - 10.1107/s0907444908007026
DO - 10.1107/s0907444908007026
M3 - Article
SN - 0907-4449
VL - 64
SP - 611
EP - 619
JO - Acta Crystallographica Section D-Biological Crystallography
JF - Acta Crystallographica Section D-Biological Crystallography
ER -