Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis

M H R I El-Hamamsy, A W Smith, A S Thompson, M D Threadgill

Research output: Contribution to journalArticle

54 Citations (Scopus)
180 Downloads (Pure)

Abstract

Tuberculosis is an increasing threat, owing to the spread of AIDS and to the development of resistance of the causative organism, Mycobacterium tuberculosis, to the currently available drugs. Dihydrofolate reductase (DHFR) is an important enzyme of the folate cycle; inhibition of DHFR inhibits growth and causes cell death. The crystal structure of M. tuberculosis DHFR revealed a glycerol tightly bound close to the binding site for the substrate dihydrofolate; this glycerol-binding motif is absent from the human enzyme. A series of pyrimidine-2,4-diamines was designed with a two-carbon tether between a glycerol-mimicking triol and the 6-position of the heterocycle; these compounds also carried aryl substituents at the 5-position. These, their diastereoisomers, analogues lacking two hydroxy groups and analogues lacking the two-carbon spacing linker were synthesised by acylation of the anions derived from phenylacetonitriles with ethyl (4S,5R)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-4-propanoate, ethyl (4S,5S)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-4-propanoate, tetrahydrooxepin-2-one and 2,3-O-isopropylidene-D-erythronolactone, respectively, to give the corresponding α-acylphenylacetonitriles. Formation of the methyl enol ethers, condensation with guanidine and deprotection gave the pyrimidine-2,4-diamines. Preliminary assay of the abilities of these compounds to inhibit the growth of TB5 Saccharomyces cerevisiae carrying the DHFR genes from M. tuberculosis, human and yeast indicated that 5-phenyl-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine selectively inhibited M. tuberculosis DHFR and had little effect on the human or yeast enzymes.
Original languageEnglish
Pages (from-to)4552-4576
Number of pages25
JournalBioorganic and Medicinal Chemistry
Volume15
Issue number13
DOIs
Publication statusPublished - 1 Jul 2007

Fingerprint Dive into the research topics of 'Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis'. Together they form a unique fingerprint.

  • Cite this