Projects per year
Abstract
The structure of the fragile glass-forming material CaAl2O4 was measured by applying the method of neutron diffraction with Ca isotope substitution to the laser-heated aerodynamically levitated liquid at 1973(30) K and to the glass at 300(1) K. The results, interpreted with the aid of molecular dynamics simulations, reveal key structural modifications on multiple length scales. Specifically, there is a reorganization on quenching that leads to an almost complete breakdown of the AlO5 polyhedra and threefold coordinated oxygen atoms present in the liquid, and to their replacement by a predominantly corner-sharing network of AlO4 tetrahedra in the glass. This process is accompanied by the formation of branched chains of edge and face-sharing Ca-centered polyhedra that give cationic ordering on an intermediate length scale, where the measured coordination number for O around Ca is 6.0(2) for the liquid and 6.4(2) for the glass.
Original language | English |
---|---|
Article number | 235501 |
Number of pages | 5 |
Journal | Physical Review Letters |
Volume | 109 |
Issue number | 23 |
Early online date | 5 Dec 2012 |
DOIs | |
Publication status | Published - 7 Dec 2012 |
Fingerprint
Dive into the research topics of 'Structural transformations on vitrification in the fragile glass-forming system CaAl2O4'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Network Structures: from Fundamentals to Functionality
Salmon, P. (PI) & Zeidler, A. (CoI)
Engineering and Physical Sciences Research Council
5/06/12 → 4/10/15
Project: Research council
-
DESIGN OF INTERMEDIATE RANGE ORDER IN AMORPHOUS MATERIALS
Salmon, P. (PI)
Engineering and Physical Sciences Research Council
1/04/05 → 30/09/08
Project: Research council