Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus

Nigel Parry, Graham Fox, David Rowlands, Fred Brown, Elizabeth Fry, Ravindra Acharya, Derek Logan, David Stuart

Research output: Contribution to journalLetterpeer-review

Abstract

CHANGES resulting in altered antigenic properties of viruses nearly always occur on their surface and have been attributed to the substitution of residues directly involved in binding antibody. To investigate the mechanism of antigenic variation in foot-and-mouth disease virus (FMDV), variants that escape neutralization by a monoclonal antibody have been compared crystallographically and serologically with parental virus. FMDVs form one of the four genera of the Picornaviridae. The unenveloped icosahedral shell comprises 60 copies each of four structural proteins VP1-4. Representatives from each of the genera have similar overall structure, but differences in the external features1-4. For example, human rhinovirus has a pronounced 'canyon' that is proposed to contain the cell attachment site1,5-7, whereas elements of the attachment site for FMDV, which involves the G-H loop (residues 134-160) and C-terminus (200-213) of VP18,9, are exposed on the surface. Moreover, this G-H loop, which is a major antigenic site of FMDV, forms a prominent, highly accessible protrusion4, a feature not seen in other picornaviruses. It is this loop that is perturbed in the variant viruses that we have studied. The amino acid mutations characterizing the variants are not at positions directly involved in antibody binding, but result in far-reaching perturbations of the surface structure of the virus. Thus, this virus seems to use a novel escape mechanism whereby an induced confor-mational change in a major antigenic loop destroys the integrity of the epitope.

Original languageEnglish
Pages (from-to)569-572
Number of pages4
JournalNature
Volume347
Issue number6293
DOIs
Publication statusPublished - 1 Oct 1990

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus'. Together they form a unique fingerprint.

Cite this