Stress and strain distribution in the bone surrounding a new design of dental implant: a comparison with a threaded Branemark type implant

Sally E Clift, J Fisher, C J Watson

Research output: Contribution to journalArticle

Abstract

The stress and strain distributions in the bone surrounding a new dental implant, designed specifically for use with a bioactive porous coating and thus having a fully bonded interface to the bone, have been analysed. The new implant geometry was slightly tapered, with deep concentric grooves to allow bone ingrowth and load transfer, and had a parallel cylindrical section at the neck. The results have been compared with stress and strain predictions in the bone surrounding a 'Branemark type' threaded implant with a fully bonded interface. Under axial loading both implant types produced similar stress and strain distributions with a higher level of stress in the cortical bone surrounding the neck of the implant. Under lateral loading a high stress concentration was found in the neck region of both implants, but this was lower around the neck of the new design compared with the threaded implant. When the new implant was surrounded by cancellous bone, the reduction in the stress concentration was up to 50 per cent. This reduction should help to reduce fatigue failure and bone resorption in this area under lateral loading
Original languageEnglish
Pages (from-to)133-138
Number of pages6
JournalProceedings of the Institution of Mechanical Engineers, Part H - Journal of Engineering in Medicine
Volume207
Issue number3
Publication statusPublished - 1993

Fingerprint

Dental prostheses
Bone
Stress concentration
Fatigue of materials
Coatings
Geometry

Cite this

@article{962d2d9f9a6b4b9388194e784538133f,
title = "Stress and strain distribution in the bone surrounding a new design of dental implant: a comparison with a threaded Branemark type implant",
abstract = "The stress and strain distributions in the bone surrounding a new dental implant, designed specifically for use with a bioactive porous coating and thus having a fully bonded interface to the bone, have been analysed. The new implant geometry was slightly tapered, with deep concentric grooves to allow bone ingrowth and load transfer, and had a parallel cylindrical section at the neck. The results have been compared with stress and strain predictions in the bone surrounding a 'Branemark type' threaded implant with a fully bonded interface. Under axial loading both implant types produced similar stress and strain distributions with a higher level of stress in the cortical bone surrounding the neck of the implant. Under lateral loading a high stress concentration was found in the neck region of both implants, but this was lower around the neck of the new design compared with the threaded implant. When the new implant was surrounded by cancellous bone, the reduction in the stress concentration was up to 50 per cent. This reduction should help to reduce fatigue failure and bone resorption in this area under lateral loading",
author = "Clift, {Sally E} and J Fisher and Watson, {C J}",
year = "1993",
language = "English",
volume = "207",
pages = "133--138",
journal = "Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine",
issn = "0954-4119",
publisher = "Sage Publications",
number = "3",

}

TY - JOUR

T1 - Stress and strain distribution in the bone surrounding a new design of dental implant: a comparison with a threaded Branemark type implant

AU - Clift, Sally E

AU - Fisher, J

AU - Watson, C J

PY - 1993

Y1 - 1993

N2 - The stress and strain distributions in the bone surrounding a new dental implant, designed specifically for use with a bioactive porous coating and thus having a fully bonded interface to the bone, have been analysed. The new implant geometry was slightly tapered, with deep concentric grooves to allow bone ingrowth and load transfer, and had a parallel cylindrical section at the neck. The results have been compared with stress and strain predictions in the bone surrounding a 'Branemark type' threaded implant with a fully bonded interface. Under axial loading both implant types produced similar stress and strain distributions with a higher level of stress in the cortical bone surrounding the neck of the implant. Under lateral loading a high stress concentration was found in the neck region of both implants, but this was lower around the neck of the new design compared with the threaded implant. When the new implant was surrounded by cancellous bone, the reduction in the stress concentration was up to 50 per cent. This reduction should help to reduce fatigue failure and bone resorption in this area under lateral loading

AB - The stress and strain distributions in the bone surrounding a new dental implant, designed specifically for use with a bioactive porous coating and thus having a fully bonded interface to the bone, have been analysed. The new implant geometry was slightly tapered, with deep concentric grooves to allow bone ingrowth and load transfer, and had a parallel cylindrical section at the neck. The results have been compared with stress and strain predictions in the bone surrounding a 'Branemark type' threaded implant with a fully bonded interface. Under axial loading both implant types produced similar stress and strain distributions with a higher level of stress in the cortical bone surrounding the neck of the implant. Under lateral loading a high stress concentration was found in the neck region of both implants, but this was lower around the neck of the new design compared with the threaded implant. When the new implant was surrounded by cancellous bone, the reduction in the stress concentration was up to 50 per cent. This reduction should help to reduce fatigue failure and bone resorption in this area under lateral loading

M3 - Article

VL - 207

SP - 133

EP - 138

JO - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine

JF - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine

SN - 0954-4119

IS - 3

ER -