Spin Domains in One-Dimensional Conservative Polariton Solitons

Maksym Sich, Lucy E. Tapia-Rodriguez, Helgi Sigurdsson, Paul M. Walker, Edmund Clarke, Ivan A. Shelykh, Benjamin Royall, Evgeny S. Sedov, Alexey V. Kavokin, Dmitry V. Skryabin, Maurice S. Skolnick, Dmitry N. Krizhanovskii

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We report stable orthogonally polarized domains in high-density polariton solitons propagating in a semiconductor microcavity wire. This effect arises from spin-dependent polariton-polariton interactions and pump-induced imbalance of polariton spin populations. The interactions result in an effective magnetic field acting on polariton spin across the soliton profile, leading to the formation of polarization domains. Our experimental findings are in excellent agreement with theoretical modeling taking into account these effects.

Original languageEnglish
Pages (from-to)5095-5102
Number of pages8
JournalACS Photonics
Volume5
Issue number12
Early online date12 Nov 2018
DOIs
Publication statusPublished - 19 Dec 2018

Keywords

  • exciton-polariton
  • microcavity
  • nonlinear physics
  • one-dimensional kinetics
  • soliton
  • TE-TM splitting.

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biotechnology
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Cite this

Sich, M., Tapia-Rodriguez, L. E., Sigurdsson, H., Walker, P. M., Clarke, E., Shelykh, I. A., ... Krizhanovskii, D. N. (2018). Spin Domains in One-Dimensional Conservative Polariton Solitons. ACS Photonics, 5(12), 5095-5102. https://doi.org/10.1021/acsphotonics.8b01410

Spin Domains in One-Dimensional Conservative Polariton Solitons. / Sich, Maksym; Tapia-Rodriguez, Lucy E.; Sigurdsson, Helgi; Walker, Paul M.; Clarke, Edmund; Shelykh, Ivan A.; Royall, Benjamin; Sedov, Evgeny S.; Kavokin, Alexey V.; Skryabin, Dmitry V.; Skolnick, Maurice S.; Krizhanovskii, Dmitry N.

In: ACS Photonics, Vol. 5, No. 12, 19.12.2018, p. 5095-5102.

Research output: Contribution to journalArticle

Sich, M, Tapia-Rodriguez, LE, Sigurdsson, H, Walker, PM, Clarke, E, Shelykh, IA, Royall, B, Sedov, ES, Kavokin, AV, Skryabin, DV, Skolnick, MS & Krizhanovskii, DN 2018, 'Spin Domains in One-Dimensional Conservative Polariton Solitons', ACS Photonics, vol. 5, no. 12, pp. 5095-5102. https://doi.org/10.1021/acsphotonics.8b01410
Sich M, Tapia-Rodriguez LE, Sigurdsson H, Walker PM, Clarke E, Shelykh IA et al. Spin Domains in One-Dimensional Conservative Polariton Solitons. ACS Photonics. 2018 Dec 19;5(12):5095-5102. https://doi.org/10.1021/acsphotonics.8b01410
Sich, Maksym ; Tapia-Rodriguez, Lucy E. ; Sigurdsson, Helgi ; Walker, Paul M. ; Clarke, Edmund ; Shelykh, Ivan A. ; Royall, Benjamin ; Sedov, Evgeny S. ; Kavokin, Alexey V. ; Skryabin, Dmitry V. ; Skolnick, Maurice S. ; Krizhanovskii, Dmitry N. / Spin Domains in One-Dimensional Conservative Polariton Solitons. In: ACS Photonics. 2018 ; Vol. 5, No. 12. pp. 5095-5102.
@article{f4d7f5d31e224efca2623de49522af56,
title = "Spin Domains in One-Dimensional Conservative Polariton Solitons",
abstract = "We report stable orthogonally polarized domains in high-density polariton solitons propagating in a semiconductor microcavity wire. This effect arises from spin-dependent polariton-polariton interactions and pump-induced imbalance of polariton spin populations. The interactions result in an effective magnetic field acting on polariton spin across the soliton profile, leading to the formation of polarization domains. Our experimental findings are in excellent agreement with theoretical modeling taking into account these effects.",
keywords = "exciton-polariton, microcavity, nonlinear physics, one-dimensional kinetics, soliton, TE-TM splitting.",
author = "Maksym Sich and Tapia-Rodriguez, {Lucy E.} and Helgi Sigurdsson and Walker, {Paul M.} and Edmund Clarke and Shelykh, {Ivan A.} and Benjamin Royall and Sedov, {Evgeny S.} and Kavokin, {Alexey V.} and Skryabin, {Dmitry V.} and Skolnick, {Maurice S.} and Krizhanovskii, {Dmitry N.}",
year = "2018",
month = "12",
day = "19",
doi = "10.1021/acsphotonics.8b01410",
language = "English",
volume = "5",
pages = "5095--5102",
journal = "Photonics",
issn = "2304-6702",
publisher = "MDPI",
number = "12",

}

TY - JOUR

T1 - Spin Domains in One-Dimensional Conservative Polariton Solitons

AU - Sich, Maksym

AU - Tapia-Rodriguez, Lucy E.

AU - Sigurdsson, Helgi

AU - Walker, Paul M.

AU - Clarke, Edmund

AU - Shelykh, Ivan A.

AU - Royall, Benjamin

AU - Sedov, Evgeny S.

AU - Kavokin, Alexey V.

AU - Skryabin, Dmitry V.

AU - Skolnick, Maurice S.

AU - Krizhanovskii, Dmitry N.

PY - 2018/12/19

Y1 - 2018/12/19

N2 - We report stable orthogonally polarized domains in high-density polariton solitons propagating in a semiconductor microcavity wire. This effect arises from spin-dependent polariton-polariton interactions and pump-induced imbalance of polariton spin populations. The interactions result in an effective magnetic field acting on polariton spin across the soliton profile, leading to the formation of polarization domains. Our experimental findings are in excellent agreement with theoretical modeling taking into account these effects.

AB - We report stable orthogonally polarized domains in high-density polariton solitons propagating in a semiconductor microcavity wire. This effect arises from spin-dependent polariton-polariton interactions and pump-induced imbalance of polariton spin populations. The interactions result in an effective magnetic field acting on polariton spin across the soliton profile, leading to the formation of polarization domains. Our experimental findings are in excellent agreement with theoretical modeling taking into account these effects.

KW - exciton-polariton

KW - microcavity

KW - nonlinear physics

KW - one-dimensional kinetics

KW - soliton

KW - TE-TM splitting.

UR - http://www.scopus.com/inward/record.url?scp=85058067132&partnerID=8YFLogxK

U2 - 10.1021/acsphotonics.8b01410

DO - 10.1021/acsphotonics.8b01410

M3 - Article

AN - SCOPUS:85058067132

VL - 5

SP - 5095

EP - 5102

JO - Photonics

JF - Photonics

SN - 2304-6702

IS - 12

ER -