Spatial patterns of dissipative polariton solitons in semiconductor microcavities

J. K. Chana, M. Sich, F. Fras, A. V. Gorbach, D. V. Skryabin, E. Cancellieri, E. A. Cerda-Méndez, K. Biermann, R. Hey, P. V. Santos, M. S. Skolnick, D. N. Krizhanovskii

Research output: Contribution to journalArticle

11 Citations (Scopus)
67 Downloads (Pure)

Abstract

We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energy-momentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts.

Original languageEnglish
Article number256401
JournalPhysical Review Letters
Volume115
Issue number25
Early online date15 Dec 2015
DOIs
Publication statusPublished - 2016

Fingerprint

polaritons
solitary waves
wave fronts
pulses
locking
inhomogeneity
actuators
kinetic energy
interactions
propagation
lasers

Cite this

Spatial patterns of dissipative polariton solitons in semiconductor microcavities. / Chana, J. K.; Sich, M.; Fras, F.; Gorbach, A. V.; Skryabin, D. V.; Cancellieri, E.; Cerda-Méndez, E. A.; Biermann, K.; Hey, R.; Santos, P. V.; Skolnick, M. S.; Krizhanovskii, D. N.

In: Physical Review Letters, Vol. 115, No. 25, 256401, 2016.

Research output: Contribution to journalArticle

Chana, JK, Sich, M, Fras, F, Gorbach, AV, Skryabin, DV, Cancellieri, E, Cerda-Méndez, EA, Biermann, K, Hey, R, Santos, PV, Skolnick, MS & Krizhanovskii, DN 2016, 'Spatial patterns of dissipative polariton solitons in semiconductor microcavities', Physical Review Letters, vol. 115, no. 25, 256401. https://doi.org/10.1103/PhysRevLett.115.256401
Chana, J. K. ; Sich, M. ; Fras, F. ; Gorbach, A. V. ; Skryabin, D. V. ; Cancellieri, E. ; Cerda-Méndez, E. A. ; Biermann, K. ; Hey, R. ; Santos, P. V. ; Skolnick, M. S. ; Krizhanovskii, D. N. / Spatial patterns of dissipative polariton solitons in semiconductor microcavities. In: Physical Review Letters. 2016 ; Vol. 115, No. 25.
@article{ffb6fbe0b54947f489a46c9d55f9d0ad,
title = "Spatial patterns of dissipative polariton solitons in semiconductor microcavities",
abstract = "We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energy-momentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts.",
author = "Chana, {J. K.} and M. Sich and F. Fras and Gorbach, {A. V.} and Skryabin, {D. V.} and E. Cancellieri and Cerda-M{\'e}ndez, {E. A.} and K. Biermann and R. Hey and Santos, {P. V.} and Skolnick, {M. S.} and Krizhanovskii, {D. N.}",
year = "2016",
doi = "10.1103/PhysRevLett.115.256401",
language = "English",
volume = "115",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "25",

}

TY - JOUR

T1 - Spatial patterns of dissipative polariton solitons in semiconductor microcavities

AU - Chana, J. K.

AU - Sich, M.

AU - Fras, F.

AU - Gorbach, A. V.

AU - Skryabin, D. V.

AU - Cancellieri, E.

AU - Cerda-Méndez, E. A.

AU - Biermann, K.

AU - Hey, R.

AU - Santos, P. V.

AU - Skolnick, M. S.

AU - Krizhanovskii, D. N.

PY - 2016

Y1 - 2016

N2 - We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energy-momentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts.

AB - We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energy-momentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts.

UR - http://www.scopus.com/inward/record.url?scp=84953323316&partnerID=8YFLogxK

UR - http://dx.doi.org/10.1103/PhysRevLett.115.256401

UR - http://dx.doi.org/10.1103/PhysRevLett.115.256401

U2 - 10.1103/PhysRevLett.115.256401

DO - 10.1103/PhysRevLett.115.256401

M3 - Article

VL - 115

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 25

M1 - 256401

ER -