Projects per year
Abstract
We study local activity and its contrary, local passivity, for linear systems and show that generically an eigenvalue of the system matrix with positive real part implies local activity. If all state variables are port variables we prove that the system is locally active if and only if the system matrix is not dissipative. Local activity was suggested by Leon Chua as an indicator for the emergence of complexity of nonlinear systems. We propose an abstract scheme which indicates how local activity could be applied to nonlinear systems and list open questions about possible consequences for complexity.
Original language | English |
---|---|
Article number | 1750057 |
Journal | International Journal of Bifurcation and Chaos in Applied Sciences and Engineering |
Volume | 27 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2017 |
Keywords
- edge of chaos
- instability
- Local activity
- passivity
ASJC Scopus subject areas
- Modelling and Simulation
- General Engineering
- General
- Applied Mathematics
Fingerprint
Dive into the research topics of 'Some Remarks on Local Activity and Local Passivity'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Mathematical Foundations of Metamaterials: Homogenisation, Dissipation and Operator Theory
Cherednichenko, K. (PI)
Engineering and Physical Sciences Research Council
23/07/14 → 22/06/19
Project: Research council