Abstract
The cubic Klein-Gordon equation is a simple but non-trivial
partial differential equation whose numerical solution has the main building blocks required for the solution of many other partial differential equations. In this study, the library 2DECOMP&FFT is used in a Fourier spectral scheme to solve the Klein-Gordon equation and strong scaling of the code is examined on thirteen different machines for a problem size of 512^3. The results are useful in assessing likely performance of other parallel fast Fourier transform based programs for solving partial differential equations. The problem is chosen to be large enough to solve on a workstation, yet also of interest to solve quickly on a supercomputer, in particular for parametric studies. Unlike the Linpack benchmark, a high ranking will not be obtained by simply building a bigger computer.
Original language | English |
---|---|
Title of host publication | HPC '15 Proceedings of the Symposium on High Performance Computing |
Place of Publication | San Diego, U. S. A. |
Publisher | Society for Computer Simulation International |
Pages | 182-191 |
Number of pages | 10 |
ISBN (Print) | 9781510801011 |
Publication status | Published - 12 Apr 2015 |
Keywords
- cs.PF
- cs.DC
- math.NA
Fingerprint
Dive into the research topics of 'Solving the Klein-Gordon equation using Fourier spectral methods: a benchmark test for computer performance'. Together they form a unique fingerprint.Equipment
-
Balena High Performance Computing (HPC) System
Facility/equipment: Equipment
-
High Performance Computing (HPC) Facility
Chapman, S. (Manager)
University of BathFacility/equipment: Facility