Solvent-controlled O2diffusion enables air-tolerant solar hydrogen generation

Michael G. Allan, Morgan J. McKee, Frank Marken, Moritz F. Kuehnel

Research output: Contribution to journalArticlepeer-review

3 Citations (SciVal)

Abstract

Solar water splitting into H2 and O2 is a promising approach to provide renewable fuels. However, the presence of O2 hampers H2 generation and most photocatalysts show a major drop in activity in air without synthetic modification. Here, we demonstrate efficient H2 evolution in air, simply enabled by controlling O2 diffusion in the solvent. We show that in deep eutectic solvents (DESs), photocatalysts retain up to 97% of their H2 evolution activity and quantum efficiency under aerobic conditions whereas in water, the same catalysts are almost entirely quenched. Solvent-induced O2 tolerance is achieved by H2 generation outcompeting O2-induced quenching due to low O2 diffusivities in DESs combined with low O2 solubilities. Using this mechanism, we derive design rules and demonstrate that applying these rules to H2 generation in water can enhance O2 tolerance to >34%. The simplicity and generality of this approach paves the way for enhancing water splitting without adding complexity.

Original languageEnglish
Pages (from-to)5523-5529
Number of pages7
JournalEnergy and Environmental Science
Volume14
Issue number10
Early online date31 Aug 2021
DOIs
Publication statusPublished - 1 Oct 2021

ASJC Scopus subject areas

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint

Dive into the research topics of 'Solvent-controlled O2diffusion enables air-tolerant solar hydrogen generation'. Together they form a unique fingerprint.

Cite this