Abstract
Metal-on-metal (MoM) hip arthroplasties produce abundant implant-derived wear debris composed mainly of cobalt (Co) and chromium (Cr). Cobalt-chromium (Co-Cr) wear particles are difficult to identify histologically and need to be distinguished from other wear particle types and endogenous components (e.g., haemosiderin, fibrin) which may be present in MoM periprosthetic tissues. In this study we sought to determine whether histological stains that have an affinity for metals are useful in identifying Co-Cr wear debris in MoM periprosthetic tissues. Histological sections of periprosthetic tissue from 30 failed MoM hip arthroplasties were stained with haematoxylin-eosin (HE), Solochrome Cyanine (SC), Solochrome Azurine (SA) and Perls' Prussian Blue (PB). Sections of periprosthetic tissue from 10 cases of non-MoM arthroplasties using other implant biomaterials, including titanium, ceramic, polymethylmethacrylate (PMMA) and ultra-high molecular weight polyethylene (UHMWP) were similarly analysed. Sections of 10 cases of haemosiderin-containing knee tenosynovial giant cell tumour (TSGCT) were also stained with HE, SC, SA and PB. In MoM periprosthetic tissues, SC stained metal debris in phagocytic macrophages and in the superficial necrotic zone which exhibited little or no trichrome staining for fibrin. In non-MoM periprosthetic tissues, UHMWP, PMMA, ceramic and titanium particles were not stained by SC. Prussian Blue, but not SC or SA, stained haemosiderin deposits in MoM periprosthetic tissues and TSGT. Our findings show that SC staining (most likely Cr-associated) is useful in distinguishing Co-Cr wear particles from other metal/non-metal wear particles types in histological preparations of periprosthetic tissue and that SC reliably distinguishes haemosiderin from Co-Cr wear debris.
Original language | English |
---|---|
Article number | 103 |
Pages (from-to) | 1-8 |
Number of pages | 8 |
Journal | Journal of Materials Science: Materials in Medicine |
Volume | 30 |
Issue number | 9 |
DOIs | |
Publication status | Published - 1 Sept 2019 |
ASJC Scopus subject areas
- Biophysics
- Bioengineering
- Biomaterials
- Biomedical Engineering
Fingerprint
Dive into the research topics of 'Solochrome cyanine: A histological stain for cobalt-chromium wear particles in metal-on-metal periprosthetic tissues'. Together they form a unique fingerprint.Profiles
-
Richie Gill
- Department of Mechanical Engineering - Professor
- Centre for Therapeutic Innovation
- Centre for Bioengineering & Biomedical Technologies (CBio)
- Bath Institute for the Augmented Human
Person: Research & Teaching, Core staff