Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite

F. Wang, A. G. Rozhin, Z. Sun, V. Scardaci, I. H. White, A. C. Ferrari

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

We present a detailed investigation of pulse width and spectral dynamics of an Er3+-doped soliton fiber ring laser, mode-locked by a carbon-nanotube-polymer composite. The laser is stable and produces ∼ 650 fs pulses at a fundamental repetition rate of 20.8 MHz. The carbon nanotube saturable absorber has a low saturation intensity of ∼ 18.9 MW/cm 2 and a 16.9% reduction in absorption (due to saturation) at high pulse intensity (∼ 270 MW/cm2). Spectral and transient effects confirm the soliton operation of the laser.

Original languageEnglish
Pages (from-to)2319-2322
Number of pages4
JournalPhysica Status Solidi (B) Basic Research
Volume245
Issue number10
DOIs
Publication statusPublished - 1 Oct 2008

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Cite this

Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite. / Wang, F.; Rozhin, A. G.; Sun, Z.; Scardaci, V.; White, I. H.; Ferrari, A. C.

In: Physica Status Solidi (B) Basic Research, Vol. 245, No. 10, 01.10.2008, p. 2319-2322.

Research output: Contribution to journalArticle

Wang, F. ; Rozhin, A. G. ; Sun, Z. ; Scardaci, V. ; White, I. H. ; Ferrari, A. C. / Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite. In: Physica Status Solidi (B) Basic Research. 2008 ; Vol. 245, No. 10. pp. 2319-2322.
@article{61a2067206b347e2b1753f533dfd3dc9,
title = "Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite",
abstract = "We present a detailed investigation of pulse width and spectral dynamics of an Er3+-doped soliton fiber ring laser, mode-locked by a carbon-nanotube-polymer composite. The laser is stable and produces ∼ 650 fs pulses at a fundamental repetition rate of 20.8 MHz. The carbon nanotube saturable absorber has a low saturation intensity of ∼ 18.9 MW/cm 2 and a 16.9{\%} reduction in absorption (due to saturation) at high pulse intensity (∼ 270 MW/cm2). Spectral and transient effects confirm the soliton operation of the laser.",
author = "F. Wang and Rozhin, {A. G.} and Z. Sun and V. Scardaci and White, {I. H.} and Ferrari, {A. C.}",
year = "2008",
month = "10",
day = "1",
doi = "10.1002/pssb.200879632",
language = "English",
volume = "245",
pages = "2319--2322",
journal = "Physica Status Solidi (B)",
issn = "0370-1972",
publisher = "Wiley-VCH Verlag",
number = "10",

}

TY - JOUR

T1 - Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite

AU - Wang, F.

AU - Rozhin, A. G.

AU - Sun, Z.

AU - Scardaci, V.

AU - White, I. H.

AU - Ferrari, A. C.

PY - 2008/10/1

Y1 - 2008/10/1

N2 - We present a detailed investigation of pulse width and spectral dynamics of an Er3+-doped soliton fiber ring laser, mode-locked by a carbon-nanotube-polymer composite. The laser is stable and produces ∼ 650 fs pulses at a fundamental repetition rate of 20.8 MHz. The carbon nanotube saturable absorber has a low saturation intensity of ∼ 18.9 MW/cm 2 and a 16.9% reduction in absorption (due to saturation) at high pulse intensity (∼ 270 MW/cm2). Spectral and transient effects confirm the soliton operation of the laser.

AB - We present a detailed investigation of pulse width and spectral dynamics of an Er3+-doped soliton fiber ring laser, mode-locked by a carbon-nanotube-polymer composite. The laser is stable and produces ∼ 650 fs pulses at a fundamental repetition rate of 20.8 MHz. The carbon nanotube saturable absorber has a low saturation intensity of ∼ 18.9 MW/cm 2 and a 16.9% reduction in absorption (due to saturation) at high pulse intensity (∼ 270 MW/cm2). Spectral and transient effects confirm the soliton operation of the laser.

UR - http://www.scopus.com/inward/record.url?scp=54949089241&partnerID=8YFLogxK

U2 - 10.1002/pssb.200879632

DO - 10.1002/pssb.200879632

M3 - Article

AN - SCOPUS:54949089241

VL - 245

SP - 2319

EP - 2322

JO - Physica Status Solidi (B)

JF - Physica Status Solidi (B)

SN - 0370-1972

IS - 10

ER -