Site percolation and isoperimetric inequalities for plane graphs

John Haslegrave, Christoforos Panagiotis

Research output: Contribution to journalArticlepeer-review

4 Citations (SciVal)

Abstract

We use isoperimetric inequalities combined with a new technique to prove upper bounds for the site percolation threshold of plane graphs with given minimum degree conditions. In the process we prove tight new isoperimetric bounds for certain classes of hyperbolic graphs. This establishes the vertex isoperimetric constant for all triangular and square hyperbolic lattices, answering a question of Lyons and Peres. We prove that plane graphs of minimum degree at least 7 have site percolation threshold bounded away from 1/2, which was conjectured by Benjamini and Schramm, and make progress on a conjecture of Angel, Benjamini, and Horesh that the critical probability is at most 1/2 for plane triangulations of minimum degree 6. We prove additional bounds for stronger minimum degree conditions, and for graphs without triangular faces.
Original languageEnglish
Pages (from-to)150–163
Number of pages14
JournalRandom Structures and Algorithms
Volume58
Issue number1
Early online date16 Nov 2020
DOIs
Publication statusPublished - 31 Jan 2021

Fingerprint

Dive into the research topics of 'Site percolation and isoperimetric inequalities for plane graphs'. Together they form a unique fingerprint.

Cite this