Singular minimisers in the Calculus of Variations

a degenerate form of cavitation

Research output: Contribution to journalArticle

Abstract

This paper demonstrates the existence of singular minimisers to a class of variational problems that correspond to a degenerate form of cavitation and studies the stability of these singular maps with respect to three dimensional variations.

Original languageEnglish
Pages (from-to)657-681
Number of pages25
JournalAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
Volume9
Issue number6
DOIs
Publication statusPublished - 1 Nov 1992

Keywords

  • 49 H (73 G)

ASJC Scopus subject areas

  • Analysis
  • Mathematical Physics
  • Applied Mathematics

Cite this

@article{06fdf1f3e13d437185656200ad98a854,
title = "Singular minimisers in the Calculus of Variations: a degenerate form of cavitation",
abstract = "This paper demonstrates the existence of singular minimisers to a class of variational problems that correspond to a degenerate form of cavitation and studies the stability of these singular maps with respect to three dimensional variations.",
keywords = "49 H (73 G)",
author = "J. Sivaloganathan",
year = "1992",
month = "11",
day = "1",
doi = "10.1016/S0294-1449(16)30226-8",
language = "English",
volume = "9",
pages = "657--681",
journal = "Annales De L Institut Henri Poincare: Analyse Non Lin{\'e}aire",
issn = "0294-1449",
publisher = "Elsevier Masson SAS",
number = "6",

}

TY - JOUR

T1 - Singular minimisers in the Calculus of Variations

T2 - a degenerate form of cavitation

AU - Sivaloganathan, J.

PY - 1992/11/1

Y1 - 1992/11/1

N2 - This paper demonstrates the existence of singular minimisers to a class of variational problems that correspond to a degenerate form of cavitation and studies the stability of these singular maps with respect to three dimensional variations.

AB - This paper demonstrates the existence of singular minimisers to a class of variational problems that correspond to a degenerate form of cavitation and studies the stability of these singular maps with respect to three dimensional variations.

KW - 49 H (73 G)

UR - http://www.scopus.com/inward/record.url?scp=85013157855&partnerID=8YFLogxK

U2 - 10.1016/S0294-1449(16)30226-8

DO - 10.1016/S0294-1449(16)30226-8

M3 - Article

VL - 9

SP - 657

EP - 681

JO - Annales De L Institut Henri Poincare: Analyse Non Linéaire

JF - Annales De L Institut Henri Poincare: Analyse Non Linéaire

SN - 0294-1449

IS - 6

ER -