Selectivity and anti-Parkinson's potential of thiadiazolidinone RGS4 inhibitors

Levi L. Blazer, Andrew J. Storaska, Emily M. Jutkiewicz, Emma M. Turner, Mariangela Calcagno, Susan M. Wade, Qin Wang, Xi-Ping Huang, John R. Traynor, Stephen M. Husbands, Michele Morari, Richard R. Neubig

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)
180 Downloads (Pure)

Abstract

Many current therapies target G protein coupled receptors (GPCR), transporters, or ion channels. In addition to directly targeting these proteins, disrupting the protein-protein interactions that localize or regulate their function could enhance selectivity and provide unique pharmacologic actions. Regulators of G protein signaling (RGS) proteins, especially RGS4, play significant roles in epilepsy and Parkinson's disease. Thiadiazolidinone (TDZD) inhibitors of RGS4 are nanomolar potency blockers of the biochemical actions of RGS4 in vitro. Here, we demonstrate the substantial selectivity (8- to >5000-fold) of CCG-203769 for RGS4 over other RGS proteins. It is also 300-fold selective for RGS4 over GSK-3β, another target of this class of chemical scaffolds. It does not inhibit the cysteine protease papain at 100 μM. CCG-203769 enhances Gαq-dependent cellular Ca(2+) signaling in an RGS4-dependent manner. TDZD inhibitors also enhance Gαi-dependent δ-OR inhibition of cAMP production in SH-SY-5Y cells, which express endogenous receptors and RGS4. Importantly, CCG-203769 potentiates the known RGS4 mechanism of Gαi-dependent muscarinic bradycardia in vivo. Furthermore, it reverses raclopride-induced akinesia and bradykinesia in mice, a model of some aspects of the movement disorder in Parkinson's disease. A broad assessment of compound effects revealed minimal off-target effects at concentrations necessary for cellular RGS4 inhibition. These results expand our understanding of the mechanism and specificity of TDZD RGS inhibitors and support the potential for therapeutic targeting of RGS proteins in Parkinson's disease and other neural disorders.

Original languageEnglish
Pages (from-to)911-919
Number of pages8
JournalACS Chemical Neuroscience
Volume6
Issue number6
Early online date6 Apr 2015
DOIs
Publication statusPublished - 17 Jun 2015

Fingerprint Dive into the research topics of 'Selectivity and anti-Parkinson's potential of thiadiazolidinone RGS4 inhibitors'. Together they form a unique fingerprint.

Cite this