Securing a Pathway which leads to an 80% Reduction in Greenhouse Gas Emissions: Effects of Climate Change on Levels of Space Heating and Space Cooling, and Analysis of the Energy Saving Potential of the Adaptive Approach to Thermal Comfort in the Built Environment

Charles Mcgilligan

Research output: ThesisDoctoral Thesis

Abstract

Climate change brings with it a set of challenges if our buildings are to remain thermally comfortable whilst energy consumption is kept to a minimum and greenhouse gas emissions are reduced. As a means of addressing these issues, three models have been constructed using future climate data as forecast by the UK Climate Projections (UKCP09), and they have been used to inform the Department of Energy and Climate Change (DECC) 2050 Calculator. Observing there to be a correlation between regionalised National Grid non-daily metered gas demand and daily air temperature, the first model uses these data and UKCP09 data to estimate future energy savings deriving from a reduced requirement for space heating across the built environment. Using UKCP09 data, the second model estimates the increase in the uptake of residential air-conditioning if the UK were to follow the same experience as Canada, regression data showing a correlation between penetration levels of air-conditioning in the residential sector and air temperature in North America. Resultant levels of space cooling energy consumption are calculated using two different bottom-up approaches, the first of which uses the dwelling as the base unit, and the second of which uses the air-conditioner. Deriving from conventional degree-day theory and substantiated through a series of building simulations, the third model uses a novel metric, the Adaptive Comfort Degree-Day, to estimate the energy savings potential of employing adaptive comfort standards for future climates using UKCP09 data. Finally, it is found that pathways prescribed as achieving an 80% reduction in emissions levels by 2050 remain successful when the DECC 2050 Calculator is updated with correctly-weighted air temperatures. However, the demand for space heating is under-estimated by up to 99 TWh when the Calculator is amended so as to take account of data from the preceding space heating model.
LanguageEnglish
QualificationPh.D.
Awarding Institution
  • University of Bath
Supervisors/Advisors
  • Natarajan, Sukumar, Supervisor
  • Nikolopoulou, Maria-Heleni, Supervisor
Award date31 Dec 2013
StatusPublished - Feb 2013

Fingerprint

greenhouse gas
heating
cooling
climate change
air temperature
air conditioning
climate
bottom-up approach
analysis
effect
built environment
energy saving
energy
penetration
air
gas
simulation
demand
energy consumption

Cite this

@phdthesis{bb4ff6f29182471c90d58813e4bdcea1,
title = "Securing a Pathway which leads to an 80{\%} Reduction in Greenhouse Gas Emissions: Effects of Climate Change on Levels of Space Heating and Space Cooling, and Analysis of the Energy Saving Potential of the Adaptive Approach to Thermal Comfort in the Built Environment",
abstract = "Climate change brings with it a set of challenges if our buildings are to remain thermally comfortable whilst energy consumption is kept to a minimum and greenhouse gas emissions are reduced. As a means of addressing these issues, three models have been constructed using future climate data as forecast by the UK Climate Projections (UKCP09), and they have been used to inform the Department of Energy and Climate Change (DECC) 2050 Calculator. Observing there to be a correlation between regionalised National Grid non-daily metered gas demand and daily air temperature, the first model uses these data and UKCP09 data to estimate future energy savings deriving from a reduced requirement for space heating across the built environment. Using UKCP09 data, the second model estimates the increase in the uptake of residential air-conditioning if the UK were to follow the same experience as Canada, regression data showing a correlation between penetration levels of air-conditioning in the residential sector and air temperature in North America. Resultant levels of space cooling energy consumption are calculated using two different bottom-up approaches, the first of which uses the dwelling as the base unit, and the second of which uses the air-conditioner. Deriving from conventional degree-day theory and substantiated through a series of building simulations, the third model uses a novel metric, the Adaptive Comfort Degree-Day, to estimate the energy savings potential of employing adaptive comfort standards for future climates using UKCP09 data. Finally, it is found that pathways prescribed as achieving an 80{\%} reduction in emissions levels by 2050 remain successful when the DECC 2050 Calculator is updated with correctly-weighted air temperatures. However, the demand for space heating is under-estimated by up to 99 TWh when the Calculator is amended so as to take account of data from the preceding space heating model.",
author = "Charles Mcgilligan",
year = "2013",
month = "2",
language = "English",
school = "University of Bath",

}

TY - THES

T1 - Securing a Pathway which leads to an 80% Reduction in Greenhouse Gas Emissions

T2 - Effects of Climate Change on Levels of Space Heating and Space Cooling, and Analysis of the Energy Saving Potential of the Adaptive Approach to Thermal Comfort in the Built Environment

AU - Mcgilligan, Charles

PY - 2013/2

Y1 - 2013/2

N2 - Climate change brings with it a set of challenges if our buildings are to remain thermally comfortable whilst energy consumption is kept to a minimum and greenhouse gas emissions are reduced. As a means of addressing these issues, three models have been constructed using future climate data as forecast by the UK Climate Projections (UKCP09), and they have been used to inform the Department of Energy and Climate Change (DECC) 2050 Calculator. Observing there to be a correlation between regionalised National Grid non-daily metered gas demand and daily air temperature, the first model uses these data and UKCP09 data to estimate future energy savings deriving from a reduced requirement for space heating across the built environment. Using UKCP09 data, the second model estimates the increase in the uptake of residential air-conditioning if the UK were to follow the same experience as Canada, regression data showing a correlation between penetration levels of air-conditioning in the residential sector and air temperature in North America. Resultant levels of space cooling energy consumption are calculated using two different bottom-up approaches, the first of which uses the dwelling as the base unit, and the second of which uses the air-conditioner. Deriving from conventional degree-day theory and substantiated through a series of building simulations, the third model uses a novel metric, the Adaptive Comfort Degree-Day, to estimate the energy savings potential of employing adaptive comfort standards for future climates using UKCP09 data. Finally, it is found that pathways prescribed as achieving an 80% reduction in emissions levels by 2050 remain successful when the DECC 2050 Calculator is updated with correctly-weighted air temperatures. However, the demand for space heating is under-estimated by up to 99 TWh when the Calculator is amended so as to take account of data from the preceding space heating model.

AB - Climate change brings with it a set of challenges if our buildings are to remain thermally comfortable whilst energy consumption is kept to a minimum and greenhouse gas emissions are reduced. As a means of addressing these issues, three models have been constructed using future climate data as forecast by the UK Climate Projections (UKCP09), and they have been used to inform the Department of Energy and Climate Change (DECC) 2050 Calculator. Observing there to be a correlation between regionalised National Grid non-daily metered gas demand and daily air temperature, the first model uses these data and UKCP09 data to estimate future energy savings deriving from a reduced requirement for space heating across the built environment. Using UKCP09 data, the second model estimates the increase in the uptake of residential air-conditioning if the UK were to follow the same experience as Canada, regression data showing a correlation between penetration levels of air-conditioning in the residential sector and air temperature in North America. Resultant levels of space cooling energy consumption are calculated using two different bottom-up approaches, the first of which uses the dwelling as the base unit, and the second of which uses the air-conditioner. Deriving from conventional degree-day theory and substantiated through a series of building simulations, the third model uses a novel metric, the Adaptive Comfort Degree-Day, to estimate the energy savings potential of employing adaptive comfort standards for future climates using UKCP09 data. Finally, it is found that pathways prescribed as achieving an 80% reduction in emissions levels by 2050 remain successful when the DECC 2050 Calculator is updated with correctly-weighted air temperatures. However, the demand for space heating is under-estimated by up to 99 TWh when the Calculator is amended so as to take account of data from the preceding space heating model.

M3 - Doctoral Thesis

ER -