Screening a limited structure-based library identifies UDP-GalNAc-specific mutants of α-1,3-galactosyltransferase

P Tumbale, H Jamaluddin, Nethaji Thiyagarajan, K Ravi Acharya, K Brew

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Complex glycans have important roles in biological recognition processes and considerable pharmaceutical potential. The synthesis of novel glycans can be facilitated by engineering glycosyltransferases to modify their substrate specificities. The choice of sites to modify requires the knowledge of the structures of enzyme-substrate complexes while the complexity of protein structures necessitates the exploration of a large array of multisite mutations. The retaining glycosyltransferase, α-1,3-galactosyltransferase (α 3GT), which catalyzes the synthesis of the alpha-Gal epitope, has strict specificity for UDP-galactose as a donor substrate. Based on the structure of a complex of UDP-galactose with alpha 3GT, the specificity for the galactose moiety can be partly attributed to residues that interact with the galactose 2-OH group, particularly His280 and Ala282. With the goal of engineering a variant of bovine alpha 3GT with GalNAc transferase activity, we constructed a limited library of 456 alpha 3GT mutants containing 19 alternative amino acids at position 280, two each at 281 and 282 and six at position 283. Clones (1500) were screened by assaying partially purified bacterially expressed variants for GalNAc transferase activity. Mutants with the highest levels of GalNAc transferase activity, AGGL or GGGL, had substitutions at all four sites. The AGGL mutant had slightly superior GalNAc transferase activity amounting to about 3% of the activity of the wild-type enzyme with UDP-Gal. This mutant had a low activity with UDP-Gal; its crystallographic structure suggests that the smaller side chains at residues 280-282 form a pocket to accommodate the larger acetamido group of GalNAc. Mutational studies indicate that Leu283 is important for stability in this mutant.
Original languageEnglish
Pages (from-to)1036-1043
Number of pages8
JournalGlycobiology
Volume18
Issue number12
DOIs
Publication statusPublished - 2008

Fingerprint

Uridine Diphosphate
Libraries
Screening
Uridine Diphosphate Galactose
Glycosyltransferases
Galactose
Polysaccharides
Substrates
Biological Phenomena
Enzymes
Substrate Specificity
Epitopes
Substitution reactions
Clone Cells
Amino Acids
Mutation
N-acetyllactosaminide alpha-1,3-galactosyltransferase
polypeptide N-acetylgalactosaminyltransferase
Pharmaceutical Preparations
Proteins

Cite this

Screening a limited structure-based library identifies UDP-GalNAc-specific mutants of α-1,3-galactosyltransferase. / Tumbale, P; Jamaluddin, H; Thiyagarajan, Nethaji; Acharya, K Ravi; Brew, K.

In: Glycobiology, Vol. 18, No. 12, 2008, p. 1036-1043.

Research output: Contribution to journalArticle

Tumbale, P ; Jamaluddin, H ; Thiyagarajan, Nethaji ; Acharya, K Ravi ; Brew, K. / Screening a limited structure-based library identifies UDP-GalNAc-specific mutants of α-1,3-galactosyltransferase. In: Glycobiology. 2008 ; Vol. 18, No. 12. pp. 1036-1043.
@article{fa8747d5261c4a129b4c0ddbb30be9ca,
title = "Screening a limited structure-based library identifies UDP-GalNAc-specific mutants of α-1,3-galactosyltransferase",
abstract = "Complex glycans have important roles in biological recognition processes and considerable pharmaceutical potential. The synthesis of novel glycans can be facilitated by engineering glycosyltransferases to modify their substrate specificities. The choice of sites to modify requires the knowledge of the structures of enzyme-substrate complexes while the complexity of protein structures necessitates the exploration of a large array of multisite mutations. The retaining glycosyltransferase, α-1,3-galactosyltransferase (α 3GT), which catalyzes the synthesis of the alpha-Gal epitope, has strict specificity for UDP-galactose as a donor substrate. Based on the structure of a complex of UDP-galactose with alpha 3GT, the specificity for the galactose moiety can be partly attributed to residues that interact with the galactose 2-OH group, particularly His280 and Ala282. With the goal of engineering a variant of bovine alpha 3GT with GalNAc transferase activity, we constructed a limited library of 456 alpha 3GT mutants containing 19 alternative amino acids at position 280, two each at 281 and 282 and six at position 283. Clones (1500) were screened by assaying partially purified bacterially expressed variants for GalNAc transferase activity. Mutants with the highest levels of GalNAc transferase activity, AGGL or GGGL, had substitutions at all four sites. The AGGL mutant had slightly superior GalNAc transferase activity amounting to about 3{\%} of the activity of the wild-type enzyme with UDP-Gal. This mutant had a low activity with UDP-Gal; its crystallographic structure suggests that the smaller side chains at residues 280-282 form a pocket to accommodate the larger acetamido group of GalNAc. Mutational studies indicate that Leu283 is important for stability in this mutant.",
author = "P Tumbale and H Jamaluddin and Nethaji Thiyagarajan and Acharya, {K Ravi} and K Brew",
year = "2008",
doi = "10.1093/glycob/cwn083",
language = "English",
volume = "18",
pages = "1036--1043",
journal = "Glycobiology",
issn = "0959-6658",
publisher = "Oxford University Press",
number = "12",

}

TY - JOUR

T1 - Screening a limited structure-based library identifies UDP-GalNAc-specific mutants of α-1,3-galactosyltransferase

AU - Tumbale, P

AU - Jamaluddin, H

AU - Thiyagarajan, Nethaji

AU - Acharya, K Ravi

AU - Brew, K

PY - 2008

Y1 - 2008

N2 - Complex glycans have important roles in biological recognition processes and considerable pharmaceutical potential. The synthesis of novel glycans can be facilitated by engineering glycosyltransferases to modify their substrate specificities. The choice of sites to modify requires the knowledge of the structures of enzyme-substrate complexes while the complexity of protein structures necessitates the exploration of a large array of multisite mutations. The retaining glycosyltransferase, α-1,3-galactosyltransferase (α 3GT), which catalyzes the synthesis of the alpha-Gal epitope, has strict specificity for UDP-galactose as a donor substrate. Based on the structure of a complex of UDP-galactose with alpha 3GT, the specificity for the galactose moiety can be partly attributed to residues that interact with the galactose 2-OH group, particularly His280 and Ala282. With the goal of engineering a variant of bovine alpha 3GT with GalNAc transferase activity, we constructed a limited library of 456 alpha 3GT mutants containing 19 alternative amino acids at position 280, two each at 281 and 282 and six at position 283. Clones (1500) were screened by assaying partially purified bacterially expressed variants for GalNAc transferase activity. Mutants with the highest levels of GalNAc transferase activity, AGGL or GGGL, had substitutions at all four sites. The AGGL mutant had slightly superior GalNAc transferase activity amounting to about 3% of the activity of the wild-type enzyme with UDP-Gal. This mutant had a low activity with UDP-Gal; its crystallographic structure suggests that the smaller side chains at residues 280-282 form a pocket to accommodate the larger acetamido group of GalNAc. Mutational studies indicate that Leu283 is important for stability in this mutant.

AB - Complex glycans have important roles in biological recognition processes and considerable pharmaceutical potential. The synthesis of novel glycans can be facilitated by engineering glycosyltransferases to modify their substrate specificities. The choice of sites to modify requires the knowledge of the structures of enzyme-substrate complexes while the complexity of protein structures necessitates the exploration of a large array of multisite mutations. The retaining glycosyltransferase, α-1,3-galactosyltransferase (α 3GT), which catalyzes the synthesis of the alpha-Gal epitope, has strict specificity for UDP-galactose as a donor substrate. Based on the structure of a complex of UDP-galactose with alpha 3GT, the specificity for the galactose moiety can be partly attributed to residues that interact with the galactose 2-OH group, particularly His280 and Ala282. With the goal of engineering a variant of bovine alpha 3GT with GalNAc transferase activity, we constructed a limited library of 456 alpha 3GT mutants containing 19 alternative amino acids at position 280, two each at 281 and 282 and six at position 283. Clones (1500) were screened by assaying partially purified bacterially expressed variants for GalNAc transferase activity. Mutants with the highest levels of GalNAc transferase activity, AGGL or GGGL, had substitutions at all four sites. The AGGL mutant had slightly superior GalNAc transferase activity amounting to about 3% of the activity of the wild-type enzyme with UDP-Gal. This mutant had a low activity with UDP-Gal; its crystallographic structure suggests that the smaller side chains at residues 280-282 form a pocket to accommodate the larger acetamido group of GalNAc. Mutational studies indicate that Leu283 is important for stability in this mutant.

UR - http://www.scopus.com/inward/record.url?scp=57049177539&partnerID=8YFLogxK

UR - http://dx.doi.org/10.1093/glycob/cwn083

U2 - 10.1093/glycob/cwn083

DO - 10.1093/glycob/cwn083

M3 - Article

VL - 18

SP - 1036

EP - 1043

JO - Glycobiology

JF - Glycobiology

SN - 0959-6658

IS - 12

ER -