TY - JOUR
T1 - SB 203580, an inhibitor of p38 mitogen-activated protein kinase, enhances constitutive apoptosis of cytokine-deprived human eosinophils
AU - Kankaanranta, Hannu
AU - De Souza, Patricia M.
AU - Barnes, Peter J.
AU - Salmon, Michael
AU - Giembycz, Mark A.
AU - Lindsay, Mark A.
PY - 1999/8/1
Y1 - 1999/8/1
N2 - The role of p38 mitogen-activated protein (MAP) kinase, and extracellular-regulated protein kinase -1 and -2 in regulating constitutive apoptosis and interleukin (IL)-5-induced survival of human eosinophils have been investigated. Two populations of donors were identified whose eosinophils, in the absence of exogenous cytokines, underwent apoptosis at different rates. Eosinophils were thus arbitrarily classified as either 'fast'- or 'slow'-dying cells, where greater or less than 15% of the cells were apoptotic at 2 days, respectively. The selective p38 MAP kinase inhibitor, SB 203580, increased constitutive eosinophil apoptosis in both populations (EC50 ~2 μM) as evinced from morphological analysis, flow cytometry, and DNA laddering. The ability of SB 203580 to kill eosinophils was not due to nonspecific toxicity or through the inhibition of prostanoid or leukotriene production. Exposure of eosinophils to IL-5, at a concentration (10 pM) that enhanced survival maximally, abolished SB 203580- induced apoptosis. In contrast PD 098059, which selectively blocks MAP kinase kinase (MEK) 1, did not affect apoptosis of fast- or slow-dying eosinophils, or the enhanced survival of cells effected by IL-5. Collectively, these results suggest that: 1) the basal activity of p38 MAP kinase may regulate the survival of cytokine-deprived eosinophils through inhibition of apoptosis, 2) the enhancement of eosinophil survival effected by IL-5 is mediated by a mechanism(s) divorced from the activation of p38 MAP kinase, and 3) neither spontaneous eosinophil apoptosis nor their enhanced survival by IL-5 involves the activation of MEK-1.
AB - The role of p38 mitogen-activated protein (MAP) kinase, and extracellular-regulated protein kinase -1 and -2 in regulating constitutive apoptosis and interleukin (IL)-5-induced survival of human eosinophils have been investigated. Two populations of donors were identified whose eosinophils, in the absence of exogenous cytokines, underwent apoptosis at different rates. Eosinophils were thus arbitrarily classified as either 'fast'- or 'slow'-dying cells, where greater or less than 15% of the cells were apoptotic at 2 days, respectively. The selective p38 MAP kinase inhibitor, SB 203580, increased constitutive eosinophil apoptosis in both populations (EC50 ~2 μM) as evinced from morphological analysis, flow cytometry, and DNA laddering. The ability of SB 203580 to kill eosinophils was not due to nonspecific toxicity or through the inhibition of prostanoid or leukotriene production. Exposure of eosinophils to IL-5, at a concentration (10 pM) that enhanced survival maximally, abolished SB 203580- induced apoptosis. In contrast PD 098059, which selectively blocks MAP kinase kinase (MEK) 1, did not affect apoptosis of fast- or slow-dying eosinophils, or the enhanced survival of cells effected by IL-5. Collectively, these results suggest that: 1) the basal activity of p38 MAP kinase may regulate the survival of cytokine-deprived eosinophils through inhibition of apoptosis, 2) the enhancement of eosinophil survival effected by IL-5 is mediated by a mechanism(s) divorced from the activation of p38 MAP kinase, and 3) neither spontaneous eosinophil apoptosis nor their enhanced survival by IL-5 involves the activation of MEK-1.
UR - http://www.scopus.com/inward/record.url?scp=0032763790&partnerID=8YFLogxK
M3 - Article
C2 - 10411570
AN - SCOPUS:0032763790
SN - 0022-3565
VL - 290
SP - 621
EP - 628
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 2
ER -