Projects per year
Abstract
MnO2 is a technologically important material for energy storage and catalysis. Recent investigations have demonstrated the success of nanostructuring for improving the performance of rutile MnO2 in Li-ion batteries and supercapacitors and as a catalyst. Motivated by this we have investigated the stability and electronic structure of rutile (β-)MnO2 surfaces using density functional theory. A Wulff construction from relaxed surface energies indicates a rod-like equilibrium morphology that is elongated along the c-axis, and is consistent with the large number of nanowire-type structures that are obtainable experimentally. The (110) surface dominates the crystallite surface area. Moreover, higher index surfaces than considered in previous work, for instance the (211) and (311) surfaces, are also expressed to cap the rod-like morphology. Broken coordinations at the surface result in enhanced magnetic moments at Mn sites that may play a role in catalytic activity. The calculated formation energies of oxygen vacancy defects and Mn reduction at key surfaces indicate facile formation at surfaces expressed in the equilibrium morphology. The formation energies are considerably lower than for comparable structures such as rutile TiO2 and are likely to be important to the high catalytic activity of rutile MnO2.
Original language | English |
---|---|
Pages (from-to) | 1418-1426 |
Number of pages | 9 |
Journal | Journal of the American Chemical Society |
Volume | 136 |
Issue number | 4 |
Early online date | 6 Jan 2014 |
DOIs | |
Publication status | Published - 29 Jan 2014 |
Fingerprint
Dive into the research topics of 'Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Supergen Core Renewal - E-Storage
Islam, S. (PI) & Dunn, R. (CoI)
Engineering and Physical Sciences Research Council
15/02/10 → 14/08/14
Project: Research council
Profiles
-
Steve Parker
- Department of Chemistry - Professor
- Centre for Sustainable Chemical Technologies (CSCT)
- IAAPS: Propulsion and Mobility
- Institute of Sustainability and Climate Change
Person: Research & Teaching, Affiliate staff
Equipment
-
High Performance Computing (HPC) Facility
Chapman, S. (Manager)
University of BathFacility/equipment: Facility