Robust control of multiple discrete frequency vibration components in rotor - Magnetic bearing systems

Matthew Owen Thomas Cole, Patrick Sean Keogh, Clifford Robert Burrows

Research output: Contribution to journalArticlepeer-review

11 Citations (SciVal)

Abstract

This paper considers the derivation and application of closed loop vibration controllers that are designed for the attenuation of multiple discrete frequency rotor vibration components. The complex amplitudes of each vibration component are evaluated in real-time and used for dynamic feedback control with frequency matched control signals. Multi-input, multi-output system gain matrices are derived from online identification routines, performed under a finite set of different operating conditions. Controller gain matrices are synthesised using linear matrix inequality existence conditions for closed loop system stability and attenuation performance. Thus, the controllers can be designed with a degree of robustness to changing/non-linear dynamics. Implementation and testing is undertaken on a flexible rotor test rig with magnetic bearings. The controllers are shown to simultaneously attenuate vibration due to direct rotor disturbance forces and other indirectly forced non-synchronous frequency components over a range of operating conditions.
Original languageEnglish
Pages (from-to)891-899
JournalJSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing
Volume46
Issue number3
DOIs
Publication statusPublished - 2003

Fingerprint

Dive into the research topics of 'Robust control of multiple discrete frequency vibration components in rotor - Magnetic bearing systems'. Together they form a unique fingerprint.

Cite this