TY - UNPB
T1 - Robotic-Assisted Gait for lower-limb Rehabilitation
T2 - Evidence of Altered Neural Mechanisms in Stroke
AU - Mayor-Tores, Juan Manuel
AU - O'Callaghan, Ben
AU - Korik, Attila
AU - Del Felice, Alessandra
AU - Coyle, Damien
AU - Murphy, Sean
AU - Lennon, Olive
PY - 2022/4/3
Y1 - 2022/4/3
N2 - Robotic-Assisted Gait training (RAGT) offers an innovative therapeutic option for restoration of functional gait in stroke survivors, complementing existing physical rehabilitation strategies. However, there is a limited understanding of the neurophysiological response induced by this training in end-users. Neural desynchronization and Cortico-Muscular Coherence (CMC) are two biomarkers that define the level of muscle-cortex association during gait phases and can be used to estimate induced user's adaptation during RAGT. In this study, we measure Event-Related Spectral Perturbation (ERSP) and CMC from three healthy individuals and three stroke survivors during overground-gait with and without an exoskeleton. Results show that (1) the use of the exoskeleton in healthy individuals is associated with a different and more refined motor-control represented in a high θ-desynchronization, (2) altered and noisy ERSP and lower and non-focal β-CMC patterns are observed in Stroke patients when performing overground-gait both with and without the Exoskeleton, and (3) Exoskeleton use in stroke survivors is associated with a reduction in swing-time during gait-cycle, but this effect is not correlated with an increment of θ-desynchronization and/or β-CMC. ERSP and CMC demonstrated evidence of neural modulation in able-bodied users during RAGT, which could not be detected in subacute stroke survivors during RAGT. These results suggest that the gait-parameters changes observed during exoskeleton use in subacute stroke survivors are unlikely to be neurally driven.
AB - Robotic-Assisted Gait training (RAGT) offers an innovative therapeutic option for restoration of functional gait in stroke survivors, complementing existing physical rehabilitation strategies. However, there is a limited understanding of the neurophysiological response induced by this training in end-users. Neural desynchronization and Cortico-Muscular Coherence (CMC) are two biomarkers that define the level of muscle-cortex association during gait phases and can be used to estimate induced user's adaptation during RAGT. In this study, we measure Event-Related Spectral Perturbation (ERSP) and CMC from three healthy individuals and three stroke survivors during overground-gait with and without an exoskeleton. Results show that (1) the use of the exoskeleton in healthy individuals is associated with a different and more refined motor-control represented in a high θ-desynchronization, (2) altered and noisy ERSP and lower and non-focal β-CMC patterns are observed in Stroke patients when performing overground-gait both with and without the Exoskeleton, and (3) Exoskeleton use in stroke survivors is associated with a reduction in swing-time during gait-cycle, but this effect is not correlated with an increment of θ-desynchronization and/or β-CMC. ERSP and CMC demonstrated evidence of neural modulation in able-bodied users during RAGT, which could not be detected in subacute stroke survivors during RAGT. These results suggest that the gait-parameters changes observed during exoskeleton use in subacute stroke survivors are unlikely to be neurally driven.
KW - Exoskeleton
KW - Robotic-Assisted Gait Training
KW - desynchronization
KW - ERSP
KW - CMC
KW - EEG
KW - EMG
U2 - 10.1101/2022.02.01.22269218
DO - 10.1101/2022.02.01.22269218
M3 - Preprint
T3 - medRxiv
BT - Robotic-Assisted Gait for lower-limb Rehabilitation
PB - medRxiv
ER -