RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes

Frank Winnefeld, Gregor J. G. Gluth, Susan A. Bernal, Maria C. Bignozzi, Lorenza Carabba, Sundararaman Chithiraputhiran, Alireza Dehghan, Sabina Dolenec, Katja Dombrowski-Daube, Ashish Dubey, Vilma Ducman, Yu Jin, Karl Peterson, Dietmar Stephan, John L. Provis

Research output: Contribution to journalArticlepeer-review

37 Citations (SciVal)

Abstract

The RILEM technical committee TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ conducted a round robin testing programme to determine the validity of various durability testing methods, originally developed for Portland cement based-concretes, for the assessment of the durability of alkali-activated concretes. The outcomes of the round robin tests evaluating sulfate resistance, alkali-silica reaction (ASR) and freeze–thaw resistance are presented in this contribution. Five different alkali-activated concretes, based on ground granulated blast furnace slag, fly ash, or metakaolin were investigated. The extent of sulfate damage to concretes based on slag or fly ash seems to be limited when exposed to an Na2SO4 solution. The mixture based on metakaolin showed an excessive, very early expansion, followed by a dimensionally stable period, which cannot be explained at present. In the slag-based concretes, MgSO4 caused more expansion and visual damage than Na2SO4; however, the expansion limits defined in the respective standards were not exceeded. Both the ASTM C1293 and RILEM AAR-3.1 test methods for the determination of ASR expansion appear to give essentially reliable identification of expansion caused by highly reactive aggregates. Alkali-activated materials in combination with an unreactive or potentially expansive aggregate were in no case seen to cause larger expansions; only the aggregates of known very high reactivity were seen to be problematic. The results of freeze–thaw testing (with/without deicing salts) of alkali-activated concretes suggest an important influence of the curing conditions and experimental conditions on the test outcomes, which need to be understood before the tests can be reliably applied and interpreted.
Original languageEnglish
Article number140
JournalMaterials and Structures
Volume53
DOIs
Publication statusPublished - 11 Nov 2020

Fingerprint

Dive into the research topics of 'RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes'. Together they form a unique fingerprint.

Cite this