Reversible Recognition-Based Boronic Acid Probes for Glucose Detection in Live Cells and Zebrafish

Kai Wang, Ruixiao Zhang, Xiujie Zhao, Yan Ma, Lijuan Ren, Youxiao Ren, Gaofei Chen, Dingming Ye, Jinfang Wu, Xinyuan Hu, Yuanqiang Guo, Rimo Xi, Meng Meng, Qingqiang Yao, Ping Li, Qixin Chen, Tony D. James

Research output: Contribution to journalArticlepeer-review

Abstract

Glucose, a critical source of energy, directly determines the homeostasis of the human body. However, due to the lack of robust imaging probes, the mechanism underlying the changes of glucose homeostasis in the human body remains unclear. Herein, diboronic acid probes with good biocompatibility and high sensitivity were synthesized based on an ortho-aminomethylphenylboronic acid probe, phenyl(di)boronic acid (PDBA). Significantly, by introducing the water-solubilizing group −CN directly opposite the boronic acid group and −COOCH3 or −COOH groups to the β site of the anthracene in PDBA, we obtained the water-soluble probe Mc-CDBA with sensitive response (F/F0 = 47.8, detection limit (LOD) = 1.37 μM) and Ca-CDBA with the highest affinity for glucose (Ka = 4.5 × 103 M-1). On this basis, Mc-CDBA was used to identify glucose heterogeneity between normal and tumor cells. Finally, Mc-CDBA and Ca-CDBA were used for imaging glucose in zebrafish. Our research provides a new strategy for designing efficient boronic acid glucose probes and powerful new tools for the evaluation of glucose-related diseases.

Original languageEnglish
Pages (from-to)8408-8416
JournalJournal of the American Chemical Society
Volume145
Issue number15
Early online date6 Apr 2023
DOIs
Publication statusPublished - 16 Apr 2023

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Reversible Recognition-Based Boronic Acid Probes for Glucose Detection in Live Cells and Zebrafish'. Together they form a unique fingerprint.

Cite this