Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2

Toshinari Koketsu, Jiwei Ma, Benjamin Morgan, Monique Body, Christophe Legein, Walid Dachraoui, Matthia Giannini, Arnaud Demortiere, Mathieu Salanne, François Dardoize, Henri Groult, Olaf Borkiewicz, Karena Chapman, Peter Strasser, Damien Dambournet

Research output: Contribution to journalArticle

83 Citations (Scopus)
232 Downloads (Pure)

Abstract

In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result provides a new strategy for the chemical design of materials for practical multivalent batteries.
Original languageEnglish
Pages (from-to)1142-1148
Number of pages7
JournalNature Materials
Volume16
Early online date18 Sep 2017
DOIs
Publication statusPublished - 30 Nov 2017

Fingerprint

Aluminum
anatase
Titanium dioxide
Magnesium
Cations
magnesium
insertion
Positive ions
Ions
Titanium
aluminum
cations
Vacancies
titanium
ions
electrode materials
Intercalation
Lithium
intercalation
electric batteries

Cite this

Koketsu, T., Ma, J., Morgan, B., Body, M., Legein, C., Dachraoui, W., ... Dambournet, D. (2017). Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nature Materials, 16, 1142-1148. https://doi.org/10.1038/nmat4976

Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. / Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin; Body, Monique; Legein, Christophe; Dachraoui, Walid; Giannini, Matthia; Demortiere, Arnaud; Salanne, Mathieu; Dardoize, François; Groult, Henri; Borkiewicz, Olaf; Chapman, Karena; Strasser, Peter; Dambournet, Damien.

In: Nature Materials, Vol. 16, 30.11.2017, p. 1142-1148.

Research output: Contribution to journalArticle

Koketsu, T, Ma, J, Morgan, B, Body, M, Legein, C, Dachraoui, W, Giannini, M, Demortiere, A, Salanne, M, Dardoize, F, Groult, H, Borkiewicz, O, Chapman, K, Strasser, P & Dambournet, D 2017, 'Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2', Nature Materials, vol. 16, pp. 1142-1148. https://doi.org/10.1038/nmat4976
Koketsu, Toshinari ; Ma, Jiwei ; Morgan, Benjamin ; Body, Monique ; Legein, Christophe ; Dachraoui, Walid ; Giannini, Matthia ; Demortiere, Arnaud ; Salanne, Mathieu ; Dardoize, François ; Groult, Henri ; Borkiewicz, Olaf ; Chapman, Karena ; Strasser, Peter ; Dambournet, Damien. / Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. In: Nature Materials. 2017 ; Vol. 16. pp. 1142-1148.
@article{800b8cbd5b6444fc81aed3e0725b01ce,
title = "Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2",
abstract = "In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result provides a new strategy for the chemical design of materials for practical multivalent batteries.",
author = "Toshinari Koketsu and Jiwei Ma and Benjamin Morgan and Monique Body and Christophe Legein and Walid Dachraoui and Matthia Giannini and Arnaud Demortiere and Mathieu Salanne and Fran{\cc}ois Dardoize and Henri Groult and Olaf Borkiewicz and Karena Chapman and Peter Strasser and Damien Dambournet",
year = "2017",
month = "11",
day = "30",
doi = "10.1038/nmat4976",
language = "English",
volume = "16",
pages = "1142--1148",
journal = "Nature Materials",
issn = "1476-1122",
publisher = "Nature Research",

}

TY - JOUR

T1 - Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2

AU - Koketsu, Toshinari

AU - Ma, Jiwei

AU - Morgan, Benjamin

AU - Body, Monique

AU - Legein, Christophe

AU - Dachraoui, Walid

AU - Giannini, Matthia

AU - Demortiere, Arnaud

AU - Salanne, Mathieu

AU - Dardoize, François

AU - Groult, Henri

AU - Borkiewicz, Olaf

AU - Chapman, Karena

AU - Strasser, Peter

AU - Dambournet, Damien

PY - 2017/11/30

Y1 - 2017/11/30

N2 - In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result provides a new strategy for the chemical design of materials for practical multivalent batteries.

AB - In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result provides a new strategy for the chemical design of materials for practical multivalent batteries.

UR - https://doi.org/10.1038/nmat4976

U2 - 10.1038/nmat4976

DO - 10.1038/nmat4976

M3 - Article

VL - 16

SP - 1142

EP - 1148

JO - Nature Materials

JF - Nature Materials

SN - 1476-1122

ER -