Responses of bistable piezoelectric-composite energy harvester by means of recurrences

Arkadiusz Syta, Christopher R. Bowen, H. Alicia Kim, Andrzej Rysak, Grzegorz Litak

Research output: Contribution to journalArticlepeer-review

36 Citations (SciVal)
281 Downloads (Pure)


In this paper we examine the modal response of a bistable electro-mechanical energy harvesting device based on characterization of the experimental time-series. A piezoelectric element attached to a vibrating bistable carbon-fibre reinforced polymer laminate plate was used for the conversion of mechanical vibrations to electrical energy under harmonic excitations at a variety of frequencies and amplitudes. The inherent bistability of the mechanical resonator and snap-through phenomenon between stable states were exploited for energy harvesting. To identify the dynamics of the response of the studied harvesting structure and the associated output power generation we used the Fourier spectrum and Recurrence Quantification Analysis (RQA).

Original languageEnglish
Pages (from-to)823-832
JournalMechanical Systems and Signal Processing
Publication statusPublished - Aug 2016


  • Energy harvesting
  • Non-linear vibrations
  • Piezoelectric
  • Recurrence plots
  • Snap-through

ASJC Scopus subject areas

  • Mechanical Engineering
  • Civil and Structural Engineering
  • Aerospace Engineering
  • Control and Systems Engineering
  • Computer Science Applications
  • Signal Processing


Dive into the research topics of 'Responses of bistable piezoelectric-composite energy harvester by means of recurrences'. Together they form a unique fingerprint.

Cite this