Resonant Raman scattering of ZnSxSe1-x solid solutions: role of S and Se electronic states

M. Dimitrievska, H. Xie, A. J. Jackson, X. Fontané, M. Espindola-Rodriguez, E. Saucedo, A. Perez-Rodriguez, A. Walsh, V. Izquierdo-Roca

Research output: Contribution to journalArticlepeer-review

44 Citations (SciVal)
360 Downloads (Pure)

Abstract

A comprehensive Raman resonance scattering study of ZnSxSe1-x (ZnSSe) solid solutions over the whole compositional range (0 ≤ x ≤ 1) has been made using 325 and 455 nm excitation wavelengths. The Raman scattering intensities of the LO ZnS-like and ZnSe-like phonon modes, corresponding to pure S and Se vibrations, respectively, are revealed to be significantly enhanced when excited with 325 nm excitation in the case of S vibrations, and with 455 nm in the case of the Se vibrations. This behavior is explained with the interaction of the excitation photons with the corresponding S or Se electronic states in the conduction band, and further confirmed with first principle simulations. These findings advance the fundamental understanding of the coupling between the electronic transitions and photons in the case of Raman resonance effects, and provide inputs for further studies of lattice dynamics, especially in the case of chalcogenide materials. Additionally, the coexistence of modes corresponding to only S vibrations and only Se vibrations in the ZnSSe alloys makes these results applicable for the compositional assessment of ZnSSe compounds.
Original languageEnglish
Pages (from-to)7632-7640
JournalPhysical Chemistry Chemical Physics
Volume18
Issue number11
Early online date1 Sept 2015
DOIs
Publication statusPublished - 21 Mar 2016

Fingerprint

Dive into the research topics of 'Resonant Raman scattering of ZnSxSe1-x solid solutions: role of S and Se electronic states'. Together they form a unique fingerprint.

Cite this