Projects per year
Abstract
We study the asymptotic behaviour of the resolvents \({(\mathcal{A}^\varepsilon+I)^{-1}}\) of elliptic second-order differential operators \({{\mathcal{A}}^\varepsilon}\) in \({\mathbb{R}^d}\) with periodic rapidly oscillating coefficients, as the period \({\varepsilon}\) goes to zero. The class of operators covered by our analysis includes both the “classical” case of uniformly elliptic families (where the ellipticity constant does not depend on \({\varepsilon}\)) and the “double-porosity” case of coefficients that take contrasting values of order one and of order \({\varepsilon^2}\) in different parts of the period cell. We provide a construction for the leading order term of the “operator asymptotics” of \({(\mathcal{A}^\varepsilon+I)^{-1}}\) in the sense of operator-norm convergence and prove order \({O(\varepsilon)}\) remainder estimates.
Original language | English |
---|---|
Pages (from-to) | 1061-1086 |
Number of pages | 26 |
Journal | Archive for Rational Mechanics and Analysis |
Volume | 219 |
Issue number | 3 |
Early online date | 7 Sept 2015 |
DOIs | |
Publication status | Published - 1 Mar 2016 |
Fingerprint
Dive into the research topics of 'Resolvent estimates for high-contrast elliptic problems with periodic coefficients'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Mathematical Foundations of Metamaterials: Homogenisation, Dissipation and Operator Theory
Cherednichenko, K. (PI)
Engineering and Physical Sciences Research Council
23/07/14 → 22/06/19
Project: Research council