Abstract
Growing scientific and societal concerns about the effects of underwater sound on marine ecosystems is now recognised through several international initiatives aiming at measuring the environmental impact of ocean noise at large spatial and temporal scales. This pressure and these concerns are particularly acute in the Polar Regions (Arctic and Antarctic), where climate change and increased human presence add new variables to little studied, and complex environments.
Sea ice reduction is facilitating resource exploration, marine transport and other economic activities (e.g. fishing) in these regions, adding to ambient noise. In the last decade, there has also been significant growth in offshore oil and gas exploration in several Arctic regions. An assessment made by the US Geological Survey estimates that 30% of the world’s undiscovered gas and 13% of the undiscovered oil are located in the Arctic (Klett and Gautier et al., 2009).Similarly, the Barents Sea is the most important fishing ground in Europe, and a recent report by Lloyds (Lloyd’s, 2012) suggest that over the coming decade the Arctic is likely to attract substantial investment potentially reaching $100bn or more. Increased exploitation of marine resources has been shown worldwide to increase ambient noise levels, and regulations have been put in place to address these concerns, from seismic industry to the 2020 goal of Good Environmental Status enshrined in the European Marine Strategy Framework Directive. The effects of climate change are also visible in the melting of glaciers, raising sea levels and increasing the amount of fresh water in fragile ecosystems, and the observation of changes in marine life, with species moving poleward as waters warm.
Several actors, academic and commercial, are collecting passive acoustic data in the Arctic and in the Antarctic, using local deployments, long-term moorings and observatories, ships and autonomous vehicles. But the different activities are not coordinated and hampered by the low level of dissemination of results to the different communities, the sharing of equipment in difficult-to-access regions and the exchange of good practice in very challenging and dangerous environments. There is a clear need for better sharing of knowledge of the current noise status in Polar Regions.
Sea ice reduction is facilitating resource exploration, marine transport and other economic activities (e.g. fishing) in these regions, adding to ambient noise. In the last decade, there has also been significant growth in offshore oil and gas exploration in several Arctic regions. An assessment made by the US Geological Survey estimates that 30% of the world’s undiscovered gas and 13% of the undiscovered oil are located in the Arctic (Klett and Gautier et al., 2009).Similarly, the Barents Sea is the most important fishing ground in Europe, and a recent report by Lloyds (Lloyd’s, 2012) suggest that over the coming decade the Arctic is likely to attract substantial investment potentially reaching $100bn or more. Increased exploitation of marine resources has been shown worldwide to increase ambient noise levels, and regulations have been put in place to address these concerns, from seismic industry to the 2020 goal of Good Environmental Status enshrined in the European Marine Strategy Framework Directive. The effects of climate change are also visible in the melting of glaciers, raising sea levels and increasing the amount of fresh water in fragile ecosystems, and the observation of changes in marine life, with species moving poleward as waters warm.
Several actors, academic and commercial, are collecting passive acoustic data in the Arctic and in the Antarctic, using local deployments, long-term moorings and observatories, ships and autonomous vehicles. But the different activities are not coordinated and hampered by the low level of dissemination of results to the different communities, the sharing of equipment in difficult-to-access regions and the exchange of good practice in very challenging and dangerous environments. There is a clear need for better sharing of knowledge of the current noise status in Polar Regions.
Original language | English |
---|---|
Title of host publication | OCEANOISE2015 Conference Conclusions |
Editors | Michel André |
Place of Publication | Vilanova i la Geltru, Spain |
Number of pages | 4 |
Publication status | Published - 4 Jul 2016 |
Event | OCEANOISE2015: Toward an Acoustically Sound Ocean - Conference Centre, Vilanova i la Geltru, Spain Duration: 11 May 2015 → 15 May 2015 http://oceanoise2015.com |
Conference
Conference | OCEANOISE2015 |
---|---|
Country/Territory | Spain |
City | Vilanova i la Geltru |
Period | 11/05/15 → 15/05/15 |
Internet address |
Bibliographical note
Report of the Round Table session on Polar Noise, peer-reviewed and setting research directions for the international community, to be updated and reviewed at the next Oceanoise conference in 2017.Keywords
- acoustics
- ambient noise
- polar
- marine ecosystem
- climate change
ASJC Scopus subject areas
- Acoustics and Ultrasonics
- Environmental Science (miscellaneous)
- Global and Planetary Change
- Pollution
- Management, Monitoring, Policy and Law
- Ocean Engineering
- Oceanography
- Geophysics