Abstract
In this paper, a new algorithm is introduced for high-precision underwater navigation using the coherent echo signals collected during repeat-pass synthetic aperture sonar (SAS) surveys. The algorithm is a generalization of redundant phase center (RPC) micronavigation, expanded to RPCs formed between overlapping pings in repeated passes. For each set of overlapping ping pairs (two intrapass and three interpass), five different RPC arrays can be formed to provide estimates of the vehicle's surge, sway, and yaw. These estimates are used to find a weighted least squares solution for the trajectories of the repeated passes. The algorithm can estimate the relative trajectories to subwavelength precision (on order of millimeters to hundreds of micrometers at typical SAS operating frequencies of hundreds of kilohertz) in a common coordinate frame. This will lead to improved focusing and coregistration for repeat-pass SAS interferometry and is an important step toward repeat-pass bathymetric mapping. The repeat-pass RPC micronavigation algorithm is demonstrated using data collected by the 300-kHz SAS of the NATO Center for Maritime Research and Experimentation (CMRE) Minehunting Unmanned underwater vehicle for Shallow water Covert Littoral Expeditions (MUSCLE).
Original language | English |
---|---|
Pages (from-to) | 820-830 |
Number of pages | 11 |
Journal | IEEE Journal of Oceanic Engineering |
Volume | 41 |
Issue number | 4 |
Early online date | 12 Apr 2016 |
DOIs | |
Publication status | Published - 11 Oct 2016 |
Fingerprint
Dive into the research topics of 'Repeat-pass synthetic aperture sonar micro-navigation using redundant phase center arrays'. Together they form a unique fingerprint.Profiles
-
Alan Hunter
- Department of Mechanical Engineering - Deputy Head of Department: Workload and Wellbeing
- Water Innovation and Research Centre (WIRC)
- UKRI CDT in Accountable, Responsible and Transparent AI
Person: Research & Teaching