TY - JOUR
T1 - Recumbent vs. upright bicycles
T2 - 3D trajectory of body centre of mass, limb mechanical work, and operative range of propulsive muscles
AU - Telli, Riccardo
AU - Seminati, Elena
AU - Pavei, Gaspare
AU - Minetti, Alberto Enrico
PY - 2017
Y1 - 2017
N2 - Recumbent bicycles (RB) are high performance, human-powered vehicles. In comparison to normal/upright bicycles (NB) the RB may allow individuals to reach higher speeds due to aerodynamic advantages. The purpose of this investigation was to compare the non-aerodynamic factors that may potentially influence the performance of the two bicycles. 3D body centre of mass (BCoM) trajectory, its symmetries, and the components of the total mechanical work necessary to sustain cycling were assessed through 3D kinematics and computer simulations. Data collected at 50, 70, 90 110 rpm during stationary cycling were used to drive musculoskeletal modelling simulation and estimate muscle-tendon length. Results demonstrated that BCoM trajectory, confined in a 15-mm side cube, changed its orientation, maintaining a similar pattern across all cadences in both bicycles. RB displayed a reduced additional mechanical external power (16.1 ± 9.7 W on RB vs. 20.3 ± 8.8 W on NB), a greater symmetry on the progression axis, and no differences in the internal mechanical power compared to NB. Simulated muscle activity revealed small significant differences for only selected muscles. On the RB, quadriceps and gluteus demonstrated greater shortening, while biceps femoris, iliacus, and psoas exhibited greater stretch; however, aerodynamics still remains the principal benefit.
AB - Recumbent bicycles (RB) are high performance, human-powered vehicles. In comparison to normal/upright bicycles (NB) the RB may allow individuals to reach higher speeds due to aerodynamic advantages. The purpose of this investigation was to compare the non-aerodynamic factors that may potentially influence the performance of the two bicycles. 3D body centre of mass (BCoM) trajectory, its symmetries, and the components of the total mechanical work necessary to sustain cycling were assessed through 3D kinematics and computer simulations. Data collected at 50, 70, 90 110 rpm during stationary cycling were used to drive musculoskeletal modelling simulation and estimate muscle-tendon length. Results demonstrated that BCoM trajectory, confined in a 15-mm side cube, changed its orientation, maintaining a similar pattern across all cadences in both bicycles. RB displayed a reduced additional mechanical external power (16.1 ± 9.7 W on RB vs. 20.3 ± 8.8 W on NB), a greater symmetry on the progression axis, and no differences in the internal mechanical power compared to NB. Simulated muscle activity revealed small significant differences for only selected muscles. On the RB, quadriceps and gluteus demonstrated greater shortening, while biceps femoris, iliacus, and psoas exhibited greater stretch; however, aerodynamics still remains the principal benefit.
UR - http://dx.doi.org/10.1080/02640414.2016.1175650
U2 - 10.1080/02640414.2016.1175650
DO - 10.1080/02640414.2016.1175650
M3 - Article
C2 - 27103353
SN - 0264-0414
VL - 35
SP - 491
EP - 499
JO - Journal of Sports Sciences
JF - Journal of Sports Sciences
IS - 5
ER -