Projects per year
Abstract
Depending on the Ginzburg–Landau parameter K, superconductors can either be fully diamagnetic if K<1/SQRT(2) (type I superconductors) or allow magnetic flux to penetrate through Abrikosov vortices if K>1/SQRT(2) (type II superconductors; refs 1,2). At the Bogomolny critical point, K=Kc=1/SQRT(2), a state that is infinitely degenerate with respect to vortex spatial configurations arises [3,4]. Despite in-depth investigations of conventional type I and type II superconductors, a thorough understanding of the magnetic behaviour in the near-Bogomolny critical regime at K~Kc remains lacking. Here we report that in confined systems the critical regime expands over a finite interval of K forming a critical superconducting state. We show that in this state, in a sample with dimensions comparable to the vortex core size, vortices merge into a multi-quanta droplet, which undergoes Rayleigh instability [5] on increasing and decays by emitting single vortices. Superconducting vortices realize Nielsen–Olesen singular solutions of the Abelian Higgs model, which is pervasive in phenomena ranging from quantum electrodynamics to cosmology [6–9]. Our study of the transient dynamics of Abrikosov–Nielsen–Olesen vortices in systems with boundaries promises access to non-trivial effects in quantum field theory by means of bench-top laboratory experiments.
Original language | English |
---|---|
Pages (from-to) | 21-25 |
Number of pages | 5 |
Journal | Nature Physics |
Volume | 11 |
Issue number | 1 |
Early online date | 10 Nov 2014 |
DOIs | |
Publication status | Published - 1 Jan 2015 |
Keywords
- Critical superconductors
- Mesoscopic Superconductivity
- Hall magnetometry
Fingerprint
Dive into the research topics of 'Rayleigh instability of confined vortex droplets in critical superconductors'. Together they form a unique fingerprint.Projects
- 2 Finished
-
SFM Consortium: Generation, Imaging and Control of Novel Coherent Electronic States
Bending, S. (PI)
Engineering and Physical Sciences Research Council
29/03/12 → 28/09/16
Project: Research council
-
A SCANNING HALL PROBE MICROSCOPE FOR HIGH RESOLUTION MILLIKE LVIN MAGNETIC IMAGING
Bending, S. (PI)
Engineering and Physical Sciences Research Council
1/01/06 → 31/12/08
Project: Research council
Profiles
-
Simon Bending
- Department of Physics - Professor
- Centre for Sustainable Chemical Technologies (CSCT)
- Centre for Nanoscience and Nanotechnology
- Condensed Matter Physics CDT
- Centre for Integrated Materials, Processes & Structures (IMPS)
- NanoBioEletronics
- Institute of Sustainability and Climate Change
- Condensed Matter and Quantum Materials
Person: Research & Teaching, Core staff, Affiliate staff