Projects per year
Abstract
In recent years, the application of space-frame structures on large-scale freeform designs has significantly increased, due to their lightweight configuration and the freedom of design they offer. However, this has introduced a level of complexity into their construction, as doubly-curved designs require non-uniform configurations. This paper proposes a novel computational workflow that reduces the construction complexity of freeform space-frame structures, by minimizing variability in its joints. Space-frame joints are evaluated according to their geometry, and clustered for production in compliance with the tolerance requirements of the selected fabrication process. This provides a direct insight into the level of customization required and the associated construction complexity. A subsequent geometry optimization of the space-frame’s depth then minimizes the number of different joint groups required. The variables of the optimization are defined in relation to the structure’s curvature, providing a direct link between the structure’s geometry and the optimization process. Through the application of a control surface, the dimensionality of the design space is drastically reduced, rendering this method applicable to large-scale projects. A case study of an existing structure of complex geometry is presented, and this method achieves a significant reduction in the construction complexity in a robust and computationally efficient way.
Original language | English |
---|---|
Pages (from-to) | 84-99 |
Number of pages | 16 |
Journal | International Journal of Architectural Computing |
Volume | 18 |
Issue number | 1 |
Early online date | 9 Jan 2020 |
DOIs | |
Publication status | Published - 1 Mar 2020 |
Fingerprint
Dive into the research topics of 'Rationalization of Freeform Space-Frame Structures for Fabrication: Reducing variability in the joints'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Computational Design Optimization of Large-Scale Building Structures
Shepherd, P. (PI)
Engineering and Physical Sciences Research Council
1/07/16 → 31/12/19
Project: Research council
Profiles
-
Mark Evernden
- Department of Architecture & Civil Engineering - Senior Lecturer
- Centre for Regenerative Design & Engineering for a Net Positive World (RENEW)
Person: Research & Teaching, Core staff
-
Paul Shepherd
- Department of Architecture & Civil Engineering - Professor
- Made Smarter Innovation: Centre for People-Led Digitalisation
- Centre for Digital, Manufacturing & Design (dMaDe)
Person: Research & Teaching, Core staff