Abstract
Bleaney's long-standing theory of magnetic anisotropy has been employed with some success for many decades to explain paramagnetic NMR pseudocontact shifts, and has been the subject of many subsequent approximations. Here, we present a detailed experimental and theoretical investigation accounting for the anomalous solvent dependence of NMR shifts for a series of lanthanide(III) complexes, namely [LnL1] (Ln = Eu, Tb, Dy, Ho, Er, Tm, and Yb; L1: 1,4,7-tris[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane), taking into account the effect of subtle ligand flexibility on the electronic structure. We show that the anisotropy of the room temperature magnetic susceptibility tensor, which in turn affects the sign and magnitude of the pseudocontact chemical shift, is extremely sensitive to minimal structural changes in the first coordination sphere of L1. We show that DFT structural optimizations do not give accurate structural models, as assessed by the experimental chemical shifts, and thus we determine a magnetostructural correlation and employ this to evaluate the accurate solution structure for each [LnL1]. This approach allows us to explain the counterintuitive pseudocontact shift behavior, as well as a striking solvent dependence. These results have important consequences for the analysis and design of novel magnetic resonance shift and optical emission probes that are sensitive to the local solution environment and polarity.
Original language | English |
---|---|
Pages (from-to) | 14166-14172 |
Number of pages | 7 |
Journal | Journal of the American Chemical Society |
Volume | 139 |
Issue number | 40 |
Early online date | 8 Sept 2017 |
DOIs | |
Publication status | Published - 11 Oct 2017 |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry
Fingerprint
Dive into the research topics of 'Rationalization of Anomalous Pseudocontact Shifts and Their Solvent Dependence in a Series of C3-Symmetric Lanthanide Complexes'. Together they form a unique fingerprint.Profiles
-
Elizaveta Suturina
- Department of Chemistry - Senior Lecturer
- Institute of Sustainability and Climate Change
Person: Research & Teaching, Core staff