TY - UNPB
T1 - Rate of convergence estimates for the zero dissipation limit in Abelian sandpiles
AU - Jarai, Antal
PY - 2011
Y1 - 2011
N2 - We consider a continuous height version of the Abelian sandpile model with small amount of bulk dissipation gamma > 0 on each toppling, in dimensions d = 2, 3. In the limit gamma -> 0, we give a power law upper bound, based on coupling, on the rate at which the stationary measure converges to the discrete critical sandpile measure. The proofs are based on a coding of the stationary measure by weighted spanning trees, and an analysis of the latter via Wilson's algorithm. In the course of the proof, we prove an estimate on coupling a geometrically killed loop-erased random walk to an unkilled loop-erased random walk.
AB - We consider a continuous height version of the Abelian sandpile model with small amount of bulk dissipation gamma > 0 on each toppling, in dimensions d = 2, 3. In the limit gamma -> 0, we give a power law upper bound, based on coupling, on the rate at which the stationary measure converges to the discrete critical sandpile measure. The proofs are based on a coding of the stationary measure by weighted spanning trees, and an analysis of the latter via Wilson's algorithm. In the course of the proof, we prove an estimate on coupling a geometrically killed loop-erased random walk to an unkilled loop-erased random walk.
UR - http://arxiv.org/abs/1101.1437v2
M3 - Working paper
BT - Rate of convergence estimates for the zero dissipation limit in Abelian sandpiles
ER -