Rate of convergence estimates for the zero dissipation limit in Abelian sandpiles

Research output: Working paper / PreprintWorking paper

Abstract

We consider a continuous height version of the Abelian sandpile model with small amount of bulk dissipation gamma > 0 on each toppling, in dimensions d = 2, 3. In the limit gamma -> 0, we give a power law upper bound, based on coupling, on the rate at which the stationary measure converges to the discrete critical sandpile measure. The proofs are based on a coding of the stationary measure by weighted spanning trees, and an analysis of the latter via Wilson's algorithm. In the course of the proof, we prove an estimate on coupling a geometrically killed loop-erased random walk to an unkilled loop-erased random walk.
Original languageEnglish
Publication statusUnpublished - 2011

Fingerprint

Dive into the research topics of 'Rate of convergence estimates for the zero dissipation limit in Abelian sandpiles'. Together they form a unique fingerprint.

Cite this